Pyodide
Release 0.21.1

unknown

Aug 22, 2022

4

What is Pyodide?
Try Pyodide
Table of contents

Communication

Python Module Index

Index

CONTENTS

139
141

143

Pyodide, Release 0.21.1

Pyodide is a Python distribution for the browser and Node.js based on WebAssembly.

CONTENTS 1

Pyodide, Release 0.21.1

2 CONTENTS

CHAPTER
ONE

WHAT IS PYODIDE?

Pyodide is a port of CPython to WebAssembly/Emscripten.

Pyodide makes it possible to install and run Python packages in the browser with micropip. Any pure Python package
with a wheel available on PyPI is supported. Many packages with C extensions have also been ported for use with
Pyodide. These include many general-purpose packages such as regex, pyyaml, Ixml and scientific Python packages
including numpy, pandas, scipy, matplotlib, and scikit-learn.

Pyodide comes with a robust Javascript Python foreign function interface so that you can freely mix these two languages
in your code with minimal friction. This includes full support for error handling (throw an error in one language, catch
it in the other), async/await, and much more.

When used inside a browser, Python has full access to the Web APIs.

https://emscripten.org/
https://pyodide.org/en/stable/usage/api/micropip-api.html

Pyodide, Release 0.21.1

4 Chapter 1. What is Pyodide?

CHAPTER
TWO

TRY PYODIDE

Try Pyodide in a REPL directly in your browser (no installation needed).

https://pyodide.org/en/stable/console.html

Pyodide, Release 0.21.1

6 Chapter 2. Try Pyodide

CHAPTER
THREE

TABLE OF CONTENTS

3.1 Using Pyodide

3.1.1 Getting started
Try it online

Try Pyodide in a REPL directly in your browser (no installation needed).

Setup

To include Pyodide in your project you can use the following CDN URL.:

https://cdn. jsdelivr.net/pyodide/v®.21.1/full/pyodide.js

You can also download a release from GitHub releases or build Pyodide yourself. See Downloading and deploying
Pyodide for more details.

The pyodide. js file defines a single async function called IoadPyodide which sets up the Python environment and
returns the Pyodide top level namespace.

async function main() {
let pyodide = await loadPyodide();
// Pyodide is now ready to use...
console.log(pyodide.runPython("

import sys
sys.version
);
3
main(Q);

https://pyodide.org/en/latest/console.html
https://github.com/pyodide/pyodide/releases

Pyodide, Release 0.21.1

Running Python code

Python code is run using the pyodide. runPython function. It takes as input a string of Python code. If the code ends
in an expression, it returns the result of the expression, translated to JavaScript objects (see Type translations). For
example the following code will return the version string as a JavaScript string:

pyodide.runPython(’
import sys
sys.version

DF

After importing Pyodide, only packages from the standard library are available. See Loading packages for information
about loading additional packages.

Complete example

Create and save a test index.html page with the following contents:

<!DOCTYPE html>
<html>
<head>
<script src="https://cdn.jsdelivr.net/pyodide/v0.21.1/full/pyodide.js"></script>
</head>
<body>
Pyodide test page

Open your browser console to see Pyodide output
<script type="text/javascript">
async function main(){
let pyodide = await loadPyodide();
console.log(pyodide.runPython(
import sys
sys.version
"))
pyodide.runPython("print(l + 2)");
}
main();
</script>
</body>
</html>

Alternative Example

<!DOCTYPE html>
<html>
<head>
<script src="https://cdn. jsdelivr.net/pyodide/v0.21.1/full/pyodide. js"></script>
</head>

<body>
<p>
You can execute any Python code. Just enter something in the box below and

(continues on next page)

8 Chapter 3. Table of contents

Pyodide, Release 0.21.1

(continued from previous page)

click the button.
</p>
<input id="code" value="sum([1, 2, 3, 4, 5])" />
<button onclick="evaluatePython()">Run</button>

<div>Output:</div>

<textarea id="output" style="width: 100%;" rows="6" disabled></textarea>

<script>
const output = document.getElementById("output");
const code = document.getElementById("'code");

function addToOutput(s) {
output.value += ">>>" + code.value + "\n" + s + "\n";
}
output.value = "Initializing...\n";
// init Pyodide
async function main() {
let pyodide = await loadPyodide();
output.value += "Ready!\n";
return pyodide;
}
let pyodideReadyPromise = main();

async function evaluatePython() {
let pyodide = await pyodideReadyPromise;
try {
let output = pyodide.runPython(code.value);
addToOutput (output) ;
} catch (err) {
addToOutput (err) ;
}
}
</script>
</body>
</html>

Accessing Python scope from JavaScript

All functions and variables defined in the Python global scope are accessible via the pyodide. globals object.

For example, if you run the code x = numpy.ones([3,3]) in Python global scope, you can access the global vari-
able x from JavaScript in your browser’s developer console with pyodide.globals.get("x"). The same goes for

functions and imports. See Type translations for more details.

You can try it yourself in the browser console. Go to

https://cdn. jsdelivr.net/pyodide/v®.21.1/full/console.html

and type the following into the browser console:

3.1. Using Pyodide

Pyodide, Release 0.21.1

await pyodide.loadPackage('numpy");
pyodide.runPython(’
import numpy
x=numpy.ones((3, 4))
);
pyodide.globals.get('x"').tols();
// >>> [Float64Array(4), Float64Array(4), Float64Array(4)]

You can assign new values to Python global variables or create new ones from Javascript.

// re-assign a new value to an existing variable
pyodide.globals.set("x", 'x will be now string');

// add the js "alert" function to the Python global scope
// this will show a browser alert if called from Python
pyodide.globals.set("alert", alert);

// add a "square" function to Python global scope
pyodide.globals.set("square", x => x*x);

// Test the new "square" Python function
pyodide.runPython("square(3)");

Accessing JavaScript scope from Python

The JavaScript scope can be accessed from Python using the js module (see Importing JavaScript objects into Python).
We can use it to access global variables and functions from Python. For instance, we can directly manipulate the DOM:

import js

div = js.document.createElement("div")
div.innerHTML = "<h1>This element was created from Python</hl>"
js.document .body.prepend(div)

3.1.2 Downloading and deploying Pyodide

Downloading Pyodide

CDN

Pyodide is available from the JsDelivr CDN

channel indexURL Comments REPL
Latest https://cdn. jsdelivr.net/ Recommended, cached by the browser link
release pyodide/v0.21.1/full/

Dev (main | https://cdn. jsdelivr.net/ Re-deployed for each commit on main, no browser | link
branch) pyodide/dev/full/ caching, should only be used for testing

10 Chapter 3. Table of contents

https://pyodide.org/en/stable/console.html
https://pyodide.org/en/latest/console.html

Pyodide, Release 0.21.1

Warning: The previous CDN pyodide-cdn2.iodide.io is deprecated and should not be used.

GitHub releases

You can also download Pyodide packages from GitHub releases (the pyodide-build-*. tar.bz2 file).

You will need to serve these files yourself.

Serving Pyodide packages

Serving locally

With Python 3.7.5+ you can serve Pyodide files locally with http.server:

python -m http.server

from the Pyodide distribution folder. Navigate to http://localhost:8000/console.html and the Pyodide repl should load.

Remote deployments

Any service that hosts static files and that correctly sets the WASM MIME type and CORS headers will work. For
instance, you can use GitHub Pages or similar services.

For additional suggestions for optimizing the size and load time for Pyodide, see the Emscripten documentation about
deployments.

3.1.3 Using Pyodide

Pyodide may be used in a web browser or a backend JavaScript environment.

Web browsers

To use Pyodide in a web page you need to load pyodide. js and initialize Pyodide with 1oadPyodide.

<!DOCTYPE html>
<html>
<head>
<script src="https://cdn.jsdelivr.net/pyodide/v0.21.1/full/pyodide.js"></script>
</head>
<body>
<script type="text/javascript">
async function main(){
let pyodide = await loadPyodide();
console.log(pyodide.runPython("1 + 2"));
}
main(Q);
</script>
</body>
</html>

3.1. Using Pyodide 11

https://github.com/pyodide/pyodide/releases
http://localhost:8000/console.html
https://emscripten.org/docs/compiling/Deploying-Pages.html
https://emscripten.org/docs/compiling/Deploying-Pages.html

Pyodide, Release 0.21.1

See the Getting started for a walk-through tutorial as well as Loading packages and Type translations for a more in
depth discussion about existing capabilities.

You can also use the Pyodide NPM package to integrate Pyodide into your application.

Note: To avoid confusion, note that:
e cdn. jsdelivr.net/pyodide/ distributes Python packages built with Pyodide as well as pyodide. js

e cdn. jsdelivr.net/npm/pyodide@0.19.0/ is a mirror of the Pyodide NPM package, which includes none
of the WASM files

Supported browsers

Pyodide works in any modern web browser with WebAssembly support.

Tier 1 browsers are tested as part of the test suite with continuous integration,

Browser | Minimal supported version | Release date
Firefox 70.0 22 October 2019
Chrome 71.0 4 December 2018

Chrome 89 and 90 have bugs in the webassembly compiler which makes using Pyodide with them unstable. Known
problems occur in numpy and have been observed occasionally in other packages. See #1384.

Note: Latest browser versions generally provide more reliable WebAssembly support and will run Pyodide faster, so
their use is recommended.

Tier 2 browsers are known to work, but they are not systematically tested in Pyodide,

Browser | Minimal supported version | Release date
Safari 14.0 15 September 2020
Edge 80 26 February 2020

Other browsers with WebAssembly support might also work however they are not officially supported.

Web Workers

By default, WebAssembly runs in the main browser thread, and it can make UI non-responsive for long-running com-
putations.

To avoid this situation, one solution is to run Pyodide in a WebWorker.

12 Chapter 3. Table of contents

https://www.npmjs.com/package/pyodide
https://github.com/pyodide/pyodide/issues/1384

Pyodide, Release 0.21.1

Node.js

Note: The following instructions have been tested with Node.js 18.5.0. To use Pyodide with older versions of Node,
you might need to use additional command line arguments, see below.

It is now possible to install the Pyodide npm package in Node.js. To follow these instructions you need at least Pyodide
0.21.0. You can explicitly ask npm to use the alpha version:

$ npm install "pyodide@>=0.21.0-alpha.2"

Once installed, you can run the following simple script:

// hello_python. js
const { loadPyodide } = require('pyodide");

async function hello_python() {
let pyodide = await loadPyodide();
return pyodide.runPythonAsync("1+1");

}

hello_python().then((result) => {
console.log("Python says that 1+1 =", result);

};

$ node hello_python.js

Loading distutils

Loaded distutils

Python initialization complete
Python says that 1+1= 2

Or you can use the REPL. To start the Node.js REPL with support for top level await, use node
--experimental-repl-await:

$ node --experimental-repl-await
Welcome to Node.js v18.5.0.

Type ".help" for more information.

> const { loadPyodide } = require("pyodide");
undefined

> let pyodide = await loadPyodide();
Loading distutils

Loaded distutils

Python initialization complete
undefined

> await pyodide.runPythonAsync("1+1");
2

3.1. Using Pyodide 13

https://www.npmjs.com/package/pyodide

Pyodide, Release 0.21.1

Node.js versions <0.17

* Node. js versions 14.x and 16.x: to use certain features of Pyodide you need to manually install node-fetch,
e.g. by doing npm install node-fetch.

* Node.js v14.x: you need to pass the option --experimental-wasm-bigint when starting Node. Note that
this flag is not documented by node --help and moreover, if you pass --experimental-wasm-bigint to
node >14 it is an error:

$ node -v
v14.20.0

$ node --experimental-wasm-bigint hello_python.js

warning: no blob constructor, cannot create blobs with mimetypes
warning: no BlobBuilder

Loading distutils

Loaded distutils

Python initialization complete

Python says that 1+1= 2

Using Pyodide in a web worker

This document describes how to use Pyodide to execute Python scripts asynchronously in a web worker.

Setup

Setup your project to serve webworker. js. You should also serve pyodide. js, and all its associated .asm. js, .
data, . json, and .wasm files as well, though this is not strictly required if pyodide. js is pointing to a site serving
current versions of these files. The simplest way to serve the required files is to use a CDN, such as https://cdn.
jsdelivr.net/pyodide. This is the solution presented here.

Update the webworker. js sample so that it has as valid URL for pyodide. js, and sets indexURL to the location of
the supporting files.

In your application code create a web worker new Worker(...), and attach listeners to it using its .onerror and
.onmessage methods (listeners).

Communication from the worker to the main thread is done via the Worker .postMessage () method (and vice versa).

Detailed example

In this example process we will have three parties involved:
* The web worker is responsible for running scripts in its own separate thread.
* The worker API exposes a consumer-to-provider communication interface.

* The consumers want to run some scripts outside the main thread, so they don’t block the main thread.

14 Chapter 3. Table of contents

Pyodide, Release 0.21.1

Consumers

Our goal is to run some Python code in another thread, this other thread will not have access to the main thread objects.
Therefore, we will need an API that takes as input not only the Python script we want to run, but also the context
on which it relies (some JavaScript variables that we would normally get access to if we were running the Python script
in the main thread). Let’s first describe what API we would like to have.

Here is an example of consumer that will exchange with the web worker, via the worker interface/API py-worker. js.
It runs the following Python script using the provided context and a function called asyncRun().

import { asyncRun } from "./py-worker";
const script = °
import statistics
from js import A_rank
statistics.stdev(A_rank)

const context = {
A_rank: [0.8, 0.4, 1.2, 3.7, 2.6, 5.8],
};

async function main() {
try {
const { results, error } = await asyncRun(script, context);
if (results) {

console.log("pyodideWorker return results: ", results);
} else if (error) {
console.log("pyodideWorker error: ", error);
}
} catch (e) {
console.log(
"Error in pyodideWorker at e.filename}, Line: e.lineno}, e.message}’
ds
}
}
main();

Before writing the API, let’s first have a look at how the worker operates. How does our web worker run the script
using a given context.

Web worker

Let’s start with the definition. A worker is:

A worker is an object created using a constructor (e.g. Worker()) that runs a named JavaScript file —
this file contains the code that will run in the worker thread; workers run in another global context that is
different from the current window. This context is represented by either a DedicatedWorkerGlobalScope
object (in the case of dedicated workers - workers that are utilized by a single script), or a SharedWorker-
GlobalScope (in the case of shared workers - workers that are shared between multiple scripts).

In our case we will use a single worker to execute Python code without interfering with client side rendering (which is
done by the main JavaScript thread). The worker does two things:

3.1. Using Pyodide 15

https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://developer.mozilla.org/en-US/docs/Web/API/Worker/Worker

Pyodide, Release 0.21.1

1. Listen on new messages from the main thread
2. Respond back once it finished executing the Python script

These are the required tasks it should fulfill, but it can do other things. For example, to always load packages numpy
and pytz, you would insert the line await pyodide.loadPackage (['numpy', 'pytz']); as shown below:

// webworker. js

// Setup your project to serve ‘py-worker.js . You should also serve

// ‘pyodide.js, and all its associated ".asm.js, “.data’, .json,

// and “.wasm files as well:

importScripts("https://cdn. jsdelivr.net/pyodide/v0®.21.1/full/pyodide.js");

async function loadPyodideAndPackages() {
self.pyodide = await loadPyodide();
await self.pyodide.loadPackage(["numpy", "pytz"]1);
}
let pyodideReadyPromise = loadPyodideAndPackages();

self.onmessage = async (event) => {
// make sure loading is done
await pyodideReadyPromise;
// Don't bother yet with this line, suppose our API is built in such a way:
const { id, python, ...context } = event.data;
// The worker copies the context in its own "memory" (an object mapping name to values)
for (const key of Object.keys(context)) {
self[key] = context[key];
}
// Now is the easy part, the one that is similar to working in the main thread:
try {
await self.pyodide.loadPackagesFromImports(python) ;
let results = await self.pyodide.runPythonAsync(python);
self.postMessage({ results, id });
} catch (error) {
self.postMessage({ error: error.message, id });

1

The worker API

Now that we established what the two sides need and how they operate, let’s connect them using this simple API
(py-worker. js). This part is optional and only a design choice, you could achieve similar results by exchanging
message directly between your main thread and the webworker. You would just need to call .postMessages() with
the right arguments as this API does.

const pyodideWorker = new Worker("./dist/webworker.js");
const callbacks = {};
pyodideWorker.onmessage = (event) => {

const { id, ...data } = event.data;
const onSuccess = callbacks[id];

(continues on next page)

16 Chapter 3. Table of contents

Pyodide, Release 0.21.1

(continued from previous page)

delete callbacks[id];
onSuccess(data);

};

const asyncRun = () => {
let id = 0; // identify a Promise
return (script, context) => {
// the id could be generated more carefully
id = (id + 1) % Number.MAX_SAFE_INTEGER;
return new Promise((onSuccess) => {
callbacks[id] = onSuccess;
pyodideWorker.postMessage ({
...context,
python: script,
id,
b;
9K
b
HO;

export { asyncRun };

Caveats

Using a web worker is advantageous because the Python code is run in a separate thread from your main UI, and hence
does not impact your application’s responsiveness. There are some limitations, however. At present, Pyodide does not
support sharing the Python interpreter and packages between multiple web workers or with your main thread. Since
web workers are each in their own virtual machine, you also cannot share globals between a web worker and your main
thread. Finally, although the web worker is separate from your main thread, the web worker is itself single threaded, so

only one Python script will execute at a time.

Loading custom Python code

Pyodide provides a simple API pyodide.runPython to run Python code. However, when your Python code grow

bigger, putting hundreds of lines inside runPython is not scalable.

For larger projects, the best way to run Python code with Pyodide is:

1. create a Python package

2. load your Python package into the Pyodide (Emscripten) virtual file system
3. import the package with let mypkg = pyodide.pyimport ("mypkgname")
4

. call into your package with mypkg. some_api(some_args).

3.1. Using Pyodide

17

Pyodide, Release 0.21.1

Using wheels

The best way of serving custom Python code is making it a package in the wheel (.whl) format. If the package is built
as a wheel file, you can use micropip.install to install the package. See Loading packages for more information.

Packages with C extensions

If your Python code contains C extensions, it needs to be built in a specialized way (See Creating a Pyodide package).

Loading then importing Python code

It is also possible to download and import Python code from an external source. We recommend that you serve all files
in an archive, instead of individually downloading each Python script.

From Python

// Downloading an archive
await pyodide.runPythonAsync(
from pyodide.http import pyfetch
response = await pyfetch("https://.../your_package.tar.gz") # .zip, .whl,
await response.unpack_archive() # by default, unpacks to the current dir
D)
pkg = pyodide.pyimport("your_package");
pkg.do_something();

// Downloading a single file
await pyodide.runPythonAsync(
from pyodide.http import pyfetch
response = await pyfetch("https://.../script.py")
with open("script.py", "wb") as f:
f.write(await response.bytes())
D)
pkg = pyodide.pyimport("script");
pkg.do_something();

What is pyfetch?

Pyodide provides pyodide.http.pyfetch, which is a convenient wrapper of JavaScript fetch. See How can I load
external files in Pyodide? for more information.

18 Chapter 3. Table of contents

Pyodide, Release 0.21.1

From JavaScript

let response = await fetch("https://.../your_package.tar.gz"); // .zip, .whl,
let buffer = await response.arraybuffer();

await pyodide.unpackArchive(buffer); // by default, unpacks to the current dir
pyodide.pyimport("your_package");

Warning on unpacking a wheel package

Since a wheel package is actually a zip archive, you can use pyodide. unpackArchive () to unpack a wheel package,
instead of using micropip.install.

However, micropip does dependency resolution when installing packages, while pyodide.unpackArchive () sim-
ply unpacks the archive. So you must be aware of that each dependencies of a package need to be installed manually
before unpacking a wheel.

Future plans: we are planning to support a method for a static dependency resolution (See: pyodide#2045).

Running external code directly

If you want to run a single Python script from an external source in a simplest way, you can:

pyodide.runPython(await (await fetch("https://some_url/.../code.py'")).text());

Dealing with the file system

Pyodide includes a file system provided by Emscripten. In JavaScript, the Pyodide file system can be accessed through
pyodide. FS which re-exports the Emscripten File System API

Example: Reading from the file system

pyodide.runPython(’
with open("/hello.txt", "w") as fh:
fh.write("hello world!™)
s

let file = pyodide.FS.readFile("/hello.txt", { encoding: "utf8" });
console.log(file); // ==> "hello world!"

Example: Writing to the file system

let data = "hello world!";
pyodide.FS.writeFile("/hello.txt", data, { encoding: "utf8" });
pyodide.runPython(’
with open("/hello.txt", "r") as fh:
data = fh.read(Q)
print(data)
s

3.1. Using Pyodide 19

https://github.com/pyodide/pyodide/issues/2045
https://emscripten.org/docs/api_reference/Filesystem-API.html#filesystem-api

Pyodide, Release 0.21.1

Mounting a file system

The default file system used in Pyodide is MEMFS, which is a virtual in-memory file system. The data stored in
MEMES will be lost when the page is reloaded.

If you wish for files to persist, you can mount other file systems. Other file systems provided by Emscripten are IDBFS,
NODEFS, PROXYFS, WORKERFS. Note that some filesystems can only be used in specific runtime environments. See
Emscripten File System API for more details. For instance, to store data persistently between page reloads, one could
mount a folder with the IDBFES file system

let mountDir = "/mnt";
pyodide.FS.mkdir (mountDir) ;
pyodide.FS.mount (pyodide.FS. filesystems.IDBFS, { root:

"}, mountDir);

If you are using Node.js you can access the native file system by mounting NODEFS.

let mountDir = "/mnt";

pyodide.FS.mkdir (mountDir);

pyodide.FS.mount (pyodide.FS.filesystems.NODEFS, { root: "." }, mountDir);
pyodide.runPython("import os; print(os.listdir('/mnt'))");

// ==> The list of files in the Node working directory

3.1.4 Loading packages
Only the Python standard library is available after importing Pyodide. To use other packages, you’ll need to load them
using either:

* pyodide.loadPackage for packages built with Pyodide, or

* micropip.install for pure Python packages with wheels available on PyPI or from other URLs.

Note: micropip can also be used to load packages built in Pyodide (in which case it relies on pyodide.
loadPackage).

If you use pyodide.loadPackagesFromImports Pyodide will automatically download all packages that the code
snippet imports. This is particularly useful for making a repl since users might import unexpected packages. At present,
loadPackagesFromImports will not download packages from PyPlI, it will only download packages included in the
Pyodide distribution. See Packages built in Pyodide to check the full list of packages included in Pyodide.

Loading packages with pyodide.loadPackage

Packages included in the official Pyodide repository can be loaded using pyodide. loadPackage:

await pyodide.loadPackage('numpy");

It is also possible to load packages from custom URLs:

await pyodide.loadPackage(
"https://foo/bar/numpy-1.22.3-cp310-cp310-emscripten_3_1_13_wasm32.whl"
);

The file name must be a valid wheel name.

20 Chapter 3. Table of contents

https://emscripten.org/docs/api_reference/Filesystem-API.html#memfs
https://emscripten.org/docs/api_reference/Filesystem-API.html#filesystem-api
https://emscripten.org/docs/api_reference/Filesystem-API.html#filesystem-api-idbfs

Pyodide, Release 0.21.1

When you request a package from the official repository, all of the package’s dependencies are also loaded. Dependency
resolution is not yet implemented when loading packages from custom URLs.

In general, loading a package twice is not permitted. However, one can override a dependency by loading a custom
URL with the same package name before loading the dependent package.

Multiple packages can also be loaded at the same time by passing a list to pyodide. loadPackage.

await pyodide.loadPackage(["cycler", "pytz"]1);

pyodide. loadPackage returns a Promise which resolves when all the packages are finished loading:

let pyodide;

async function main() {
pyodide = await loadPyodide();
await pyodide.loadPackage("matplotlib");
// matplotlib is now available

}

mainQ);

Micropip

Installing packages from PyPI

Pyodide supports installing pure Python wheels from PyPI with micropip. micropip.install() returns a Python
Future so you can await the future or otherwise use the Python future API to do work once the packages have finished
loading:

await pyodide.loadPackage("micropip™);
const micropip = pyodide.pyimport("micropip");
await micropip.install('snowballstemmer');
pyodide.runPython(’

import snowballstemmer

stemmer = snowballstemmer.stemmer('english')
print(stemmer.stemWords('go goes going gone'.split()))

s

Micropip implements file integrity validation by checking the hash of the downloaded wheel against pre-recorded hash
digests from the PyPI JSON APL

Installing wheels from arbitrary URLs

Pure Python wheels can also be installed from any URL with micropip,

import micropip

micropip.install(
'https://example.com/files/snowballstemmer-2.0.0-py2.py3-none-any.whl'

)

Micropip decides whether a file is a URL based on whether it ends in “.whl” or not. The wheel name in the URL must
follow PEP 427 naming convention, which will be the case if the wheels is made using standard Python tools (pip
wheel, setup.py bdist_wheel). Micropip will also install the dependencies of the wheel. If dependency resolution
is not desired, you may pass deps=False.

3.1. Using Pyodide 21

https://docs.python.org/3/library/asyncio-future.html
https://www.python.org/dev/peps/pep-0427/#file-format

Pyodide, Release 0.21.1

Cross-Origin Resource Sharing (CORS)

If the file is on a remote server, the server must set Cross-Origin Resource Sharing (CORS) headers to allow access.
If the server doesn’t set CORS headers, you can use a CORS proxy. Note that using third-party CORS proxies has
security implications, particularly since we are not able to check the file integrity, unlike with installs from PyPI. See
this stack overflow answer for more information about CORS.

Example

<html>
<head>
<meta charset="utf-8" />
</head>
<body>
<script
type="text/javascript"
src="https://cdn. jsdelivr.net/pyodide/v0.21.1/full//pyodide. js"
></script>
<script type="text/javascript">
async function main() {
let pyodide = await loadPyodide();
await pyodide.loadPackage('micropip");
const micropip = pyodide.pyimport("micropip™);
await micropip.install("snowballstemmer");
await pyodide.runPython(
import snowballstemmer
stemmer = snowballstemmer.stemmer('english')
print(stemmer.stemWords('go goes going gone'.split()))
s
}
main();
</script>
</body>
</html>

Packages built in Pyodide

This is the list of Python packages included with the current version of Pyodide. These packages can be loaded with
pyodide.loadPackageormicropip.install. See Loading packages for information about loading packages. Pure
Python packages with wheels on PyPI can be loaded directly from PyPI with micropip.install.

Name Version
_lzma 1.0.0
_ssl 1.0.0
asciitree 0.3.3
astropy 5.1
atomicwrites 1.4.0
attrs 21.4.0

continues on next page

22 Chapter 3. Table of contents

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://stackoverflow.com/questions/43871637/no-access-control-allow-origin-header-is-present-on-the-requested-resource-whe/43881141#43881141

Pyodide, Release 0.21.1

Table 1 - continued from previous page

Name Version
autograd 1.4
beautifulsoup4 4.11.1
biopython 1.79
bitarray 2.5.1
bleach 5.0.0
bokeh 243
boost-histogram 1.3.1
brotli 1.0.9
certifi 2022.6.15
cfii 1.15.0
cffi_example 0.1
cftime 1.6.0
CLAPACK 3.2.1
cloudpickle 2.1.0
cmyt 1.0.4
colorspacious 1.1.2
cryptography 37.0.3
cssselect 1.1.0
cycler 0.11.0
cytoolz 0.11.2
decorator 5.1.1
demes 0.2.2
distlib 0.3.4
docutils 0.18.1
fonttools 4333
freesasa 2.1.0
future 0.18.2
galpy 1.8.0
geos 3.10.3
gmpy?2 2.1.2
gsw 34.0
h5py 3.7.0
html5lib 1.1
imageio 2.19.3
iniconfig 1.1.1
jedi 0.18.1
Jinja2 3.12
joblib 1.1.0
jsonschema 4.6.0
kiwisolver 1.4.3
lazy-object-proxy 1.7.1
libmagic 542
logbook 1.5.3
Ixml 4.9.0
MarkupSafe 2.1.1
matplotlib 352
micropip Pyodide standard library
mne 1.0.3
more-itertools 8.13.0

continues on next page

3.1. Using Pyodide 23

Pyodide, Release 0.21.1

Table 1 - continued from previous page

Name Version
mpmath 1.2.1
msgpack 1.0.4
msprime 1.2.0
networkx 2.8.4
newick 1.3.2
nlopt 2.7.0
nltk 3.7
nose 1.3.7
numcodecs 0.9.1
numpy 1.23.0
opencv-python 4.6.0.66
openssl 1.1.1n
optlang 1.5.2
packaging 21.3
pandas 14.2
parso 0.8.3
patsy 0.5.2
Pillow 9.1.1
pkgconfig 1.5.5
pluggy 1.0.0
py 1.11.0
pyb2d 0.7.2
pyclipper 1.3.0.post3
pycparser 2.21
pydantic 1.9.1
pyerfa 2.0.0.1
Pygments 2.12.0
pyparsing 3.09
Pyproj 3.3.1
pyrsistent 0.18.1
pytest 7.1.2
pytest-benchmark 34.1
python-dateutil 2.8.2
python-magic 0.4.27
python-sat 0.1.7.dev19
python_solvespace 3.0.7
pytz 2022.1
pywavelets 1.3.0
pyyaml 6.0
rebound 3.19.8
reboundx 3.7.1
regex 2022.6.2
retrying 1.3.3
RobotRaconteur 0.15.1
ruamel 0.17.21
scikit-image 0.19.3
scikit-learn 1.1.1
scipy 1.8.1
setuptools 62.6.0
continues on next page
24 Chapter 3. Table of contents

Pyodide, Release 0.21.1

Table 1 - continued from previous page

Name Version
shapely 1.8.2
six 1.16.0
soupsieve 2.3.2.postl
sparseqr 1.2
sqlalchemy 1.4.37
statsmodels 0.13.2
suitesparse 5.11.0
svgwrite 1.4.2
swiglpk 5.0.3
sympy 1.10.1
tblib 1.7.0
termcolor 1.1.0
threadpoolctl 3.1.0
tomli 2.0.1
tomli-w 1.0.0
toolz 0.11.2
tqdm 4.64.0
traits 6.3.2
tskit 0.4.1
typing-extensions 4.2.0
uncertainties 3.1.7
unyt 2.8.0
webencodings 0.5.1
wrapt 1.14.1
xarray 2022.3.0
xgboost 1.6.1
xlrd 2.0.1

yt 4.04
zarr 2.11.3

3.1.5 Type translations

In order to communicate between Python and JavaScript, we “translate” objects between the two languages. Depending
on the type of the object we either translate the object by implicitly converting it or by proxying it. By “converting”
an object we mean producing a new object in the target language which is the equivalent of the object from the source
language, for example converting a Python string to the equivalent a JavaScript string. By “proxying” an object we
mean producing a special object in the target language that forwards requests to the source language. When we proxy
a JavaScript object into Python, the result is a JsProxy object. When we proxy a Python object into JavaScript,
the result is a PyProxy object. A proxied object can be explicitly converted using the explicit conversion methods
JsProxy.to_py and PyProxy. toJs.

Python to JavaScript translations occur:
* when returning the final expression from a pyodide. runPython call,
* when importing Python objects into JavaScript
» when passing arguments to a JavaScript function called from Python,
* when returning the results of a Python function called from JavaScript,

» when accessing an attribute of a PyProxy

3.1. Using Pyodide 25

Pyodide, Release 0.21.1

JavaScript to Python translations occur:
* when importing from the js module
* when passing arguments to a Python function called from JavaScript
* when returning the result of a JavaScript function called from Python

» when accessing an attribute of a JsProxy

Memory Leaks and Python to JavaScript translations

Any time a Python to JavaScript translation occurs, it may create a PyProxy. To avoid memory leaks, you must store
the PyProxy and destroy it when you are done with it. See Calling Python objects from JavaScript for more info.

Round trip conversions

Translating an object from Python to JavaScript and then back to Python is guaranteed to give an object that is equal to
the original object. Furthermore, if the object is proxied into JavaScript, then translation back unwraps the proxy, and
the result of the round trip conversion is the original object (in the sense that they live at the same memory address).
There are a few exceptions:

1. nan is converted to nan after a round trip but nan != nan
2. proxies created using pyodide. ffi.create_proxy will be unwrapped.

Translating an object from JavaScript to Python and then back to JavaScript gives an object that is === to the original
object. Furthermore, if the object is proxied into Python, then translation back unwraps the proxy, and the result of the
round trip conversion is the original object (in the sense that they live at the same memory address). There are a few
exceptions:

1. NaN is converted to NaN after a round trip but NaN == NaN,
2. null is converted to undefined after a round trip, and

3. a BigInt will be converted to a Number after a round trip unless its absolute value is greater than Number.
MAX_SAFE_INTEGER (i.e., 2753).

Implicit conversions
We implicitly convert immutable types but not mutable types. This ensures that mutable Python objects can be modified
from JavaScript and vice-versa. Python has immutable types such as tuple and bytes that have no equivalent in

JavaScript. In order to ensure that round trip translations yield an object of the same type as the original object, we
proxy tuple and bytes objects.

Python to JavaScript

The following immutable types are implicitly converted from Python to JavaScript:

Python | JavaScript

int Number or BigInt*
float Number

str String

bool Boolean

None undefined

26 Chapter 3. Table of contents

Pyodide, Release 0.21.1

* An int is converted to a Number if the int is between -2253 and 2753 inclusive, otherwise it is converted to a
BigInt. (If the browser does not support BigInt then a Number will be used instead. In this case, conversion of large
integers from Python to JavaScript is lossy.)

JavaScript to Python

The following immutable types are implicitly converted from JavaScript to Python:

JavaScript | Python

Number int or float as appropriate*
BigInt int

String str

Boolean bool

undefined | None

null None

* A number is converted to an int if it is between -2"53 and 2753 inclusive and its fractional part is zero. Otherwise,
it is converted to a float.

Proxying

Any of the types not listed above are shared between languages using proxies that allow methods and some operations
to be called on the object from the other language.

Proxying from JavaScript into Python

When most JavaScript objects are translated into Python a JsProxy is returned. The following operations are currently
supported on a JsProxy:

Python JavaScript

str(proxy) x.toString()

proxy. foo x.foo

proxy.foo = bar x.foo = bar

del proxy.foo delete x.foo
hasattr(proxy, "foo") | "foo" in x
proxy(...) x(...)
proxy.foo(...) x.foo(...)
proxy.new(...) new X(...)
len(proxy) x.lengthor x.size
foo in proxy x.has(foo) or x.includes(foo)
proxy[foo] x.get(foo)
proxy[foo] = bar x.set(foo, bar)

del proxy[foo] x.delete(foo)

proxyl == proxy2 X ===y
proxy.typeof typeof x

iter(proxy) x[Symbol.iterator] ()
next (proxy) x.next()

await proxy await x

3.1. Using Pyodide 27

Pyodide, Release 0.21.1

Note that each of these operations is only supported if the proxied JavaScript object supports the corresponding oper-
ation. See the JsProxy API docs for the rest of the methods supported on JsProxy. Some other code snippets:

for v in proxy:
do something

is equivalent to:

for (let v of x) {
// do something
}

The dir method has been overloaded to return all keys on the prototype chain of x, so dir(x) roughly translates to:

function dir(x) {
let result = [];
do {
result.push(...Object.getOwnPropertyNames(x));
} while ((x = Object.getPrototypeOf(x)));
return result;

As a special case, JavaScript Array, HTMLCollection, and NodeList are container types, but instead of using array .
get (7) to get the 7th element, JavaScript uses array[7]. For these cases, we translate:

Python JavaScript
proxy[idx] array[idx]
proxy[idx] = val | array[idx] = val
idx in proxy idx in array

del proxy[idx] array.splice(idx)

Proxying from Python into JavaScript

When most Python objects are translated to JavaScript a PyProxy is produced.

Fewer operations can be overloaded in JavaScript than in Python, so some operations are more cumbersome on a
PyProxy than on a JsProxy. The following operations are supported:

28 Chapter 3. Table of contents

Pyodide, Release 0.21.1

JavaScript Python

foo in proxy hasattr(x, 'foo')
proxy.foo x.foo
proxy.foo = bar x.foo = bar
delete proxy.foo del x.foo
Object.getOwnPropertyNames(proxy) | dir(x)
proxy(...) x(C...)
proxy.foo(...) x.foo(...)
proxy.length len(x)
proxy.has(foo) foo in x
proxy.get(foo) x[foo]
proxy.set(foo, bar) x[foo] = bar
proxy.delete(foo) del x[foo]
proxy.type type(x)
proxy[Symbol.iterator] O iter(x)
proxy.next() next(x)
await proxy await x

Memory Leaks and PyProxy

Make sure to destroy PyProxies when you are done with them to avoid memory leaks.

let foo = pyodide.globals.get('foo');

foo();

foo.destroy();

foo(); // throws Error: Object has already been destroyed

Explicit Conversion of Proxies

Python to JavaScript

Explicit conversion of a PyProxy into a native JavaScript object is done with the PyProxy. toJs method. You can also
perform such a conversion in Python using to_js which behaves in much the same way. By default, the toJs method
does a recursive “deep” conversion, to do a shallow conversion use proxy.toJs({depth : 1}). In addition to rhe
normal type conversion, toJs method performs the following explicit conversions:

Python JavaScript
list, tuple | Array

dict Map

set Set

a buffer* TypedArray

* Examples of buffers include bytes objects and numpy arrays.

If you need to convert dict instead to Object, you can pass Object.fromEntries as the dict_converter argu-
ment: proxy.tols({dict_converter : Object.fromEntries}).

In JavaScript, Map and Set keys are compared using object identity unless the key is an immutable type (meaning
a string, a number, a bigint, a boolean, undefined, or null). On the other hand, in Python, dict and set keys

3.1. Using Pyodide 29

Pyodide, Release 0.21.1

are compared using deep equality. If a key is encountered in a dict or set that would have different semantics in
JavaScript than in Python, then a ConversionError will be thrown.

See Using Python Buffer objects from JavaScript for the behavior of toJs on buffers.

Memory Leaks and toJs

The toJs method can create many proxies at arbitrary depth. It is your responsibility to manually destroy these
proxies if you wish to avoid memory leaks. The pyproxies argument to toJs is designed to help with this:

let pyproxies = [];
proxy.tols({pyproxies});
// Do stuff
// pyproxies contains the list of proxies created by ‘toJs'. We can destroy them
// when we are done with them
for(let px of pyproxies){
px.destroy();
}
proxy.destroy();

As an alternative, if you wish to assert that the object should be fully converted and no proxies should be created, you
can use proxy.toJls({create_proxies : false}). If a proxy would be created, an error is raised instead.

JavaScript to Python

Explicit conversion of a JsProxy into a native Python object is done with the JsProxy. to_py method. By default,
the to_py method does a recursive “deep” conversion, to do a shallow conversion use proxy.to_py(depth=1) The
to_py method performs the following explicit conversions:

JavaScript | Python
Array list
Object* dict
Map dict
Set set

* to_py will only convert an object into a dictionary if its constructor is Object, otherwise the object will be left alone.
Example:

class Test {};
window.x = { "a" : 7, "b" : 2};
window.y = { "a" : 7, "b" : 2};
Object.setPrototypeOf(y, Test.prototype);
pyodide.runPython(’
from js import x, y
x 1s converted to a dictionary
assert x.to_py() == { "a" : 7, "b" : 2}
y is not a "Plain 0ld JavaScript Object"”, it's an instance of type Test so it's not.
—converted
assert y.to_py() ==y
);

30 Chapter 3. Table of contents

Pyodide, Release 0.21.1

In JavaScript, Map and Set keys are compared using object identity unless the key is an immutable type (meaning a
string, a number, a bigint, a boolean, undefined, or null). On the other hand, in Python, dict and set keys are
compared using deep equality. If a key is encountered in a Map or Set that would have different semantics in Python
than in JavaScript, then a ConversionError will be thrown. Also, in JavaScript, true !== 1 and false !== 0,
but in Python, True == 1 and False == 0. This has the result that a JavaScript map can use true and 1 as distinct
keys but a Python dict cannot. If the JavaScript map contains both true and 1 a ConversionError will be thrown.

Functions

Calling Python objects from JavaScript

If a Python object is callable, the proxy will be callable too. The arguments will be translated from JavaScript to Python
as appropriate, and the return value will be translated from JavaScript back to Python. If the return value is a PyProxy,
you must explicitly destroy it or else it will be leaked.

An example:

let test = pyodide.runPython(

def test(x):

return [n*n for n in x]

test
s
let result_py = test([1,2,3,4]);
// result_py is a PyProxy of a list.
let result_js = result_py.toJsQ;
// result_js is the array [1, 4, 9, 16]
result_py.destroy(Q);

If a function is intended to be used from JavaScript, you can use to_js on the return value. This prevents the return
value from leaking without requiring the JavaScript code to explicitly destroy it. This is particularly important for
callbacks.

let test = pyodide.runPython(

from pyodide.ffi import to_js

def test(x):

return to_js([n*n for n in x])

test
s
let result = test([1,2,3,4]);
// result is the array [1, 4, 9, 16], nothing needs to be destroyed.

If you need to use a key word argument, use callKwargs. The last argument should be a JavaScript object with the
key value arguments.

let test = pyodide.runPython(
from pyodide.ffi import to_js
def test(x, *, offset):
return to_js([n*n + offset for n in x])
to_js(test)
s
let result = test.callKwargs([1,2,3,4], { offset : 7});
// result is the array [8, 12, 16, 23]

3.1. Using Pyodide 31

Pyodide, Release 0.21.1

Calling JavaScript functions from Python

What happens when calling a JavaScript function from Python is a bit more complicated than calling a Python function
from JavaScript. If there are any keyword arguments, they are combined into a JavaScript object and used as the final
argument. Thus, if you call:

f(a=2, b=3)

then the JavaScript function receives one argument which is a JavaScript object fa : 2, b : 3}

When a JavaScript function is called, and it returns anything but a promise, if the result is a PyProxy it is destroyed.
Also, any arguments that are PyProxies that were created in the process of argument conversion are also destroyed. If
the PyProxy was created in Python using pyodide. ffi.create_proxy it is not destroyed.

When a JavaScript function returns a Promise (for example, if the function is an async function), it is assumed that
the Promise is going to do some work that uses the arguments of the function, so it is not safe to destroy them until the
Promise resolves. In this case, the proxied function returns a Python Future instead of the original Promise. When
the Promise resolves, the result is converted to Python and the converted value is used to resolve the Future. Then
if the result is a PyProxy it is destroyed. Any PyProxies created in converting the arguments are also destroyed at this
point.

As a result of this, if a PyProxy is persisted to be used later, then it must either be copied using PyProxy. copy in
JavaScript, or it must be created with pyodide. ffi.create_proxy or pyodide. ffi.create_once_callable. If
it’s only going to be called once use pyodide. ffi.create_once_callable:

from pyodide import create_once_callable
from js import setTimeout
def my_callback():
print("hi™)
setTimeout(create_once_callable(my_callback), 1000)

If it’s going to be called many times use create_proxy:

from pyodide import create_proxy
from js import document
def my_callback(Q):
print("hi")
proxy = pyodide.create_proxy(my_callback)
document .body.addEventListener(''click", proxy)
make sure to hold on to proxy
document .body.removeEventListener("click", proxy)
proxy.destroy()

Buffers

Using JavaScript Typed Arrays from Python

JavaScript ArrayBuffers and ArrayBuffer views (Int8Array and friends) are proxied into Python. Python can’t directly
access arrays if they are outside the WASM heap, so it’s impossible to directly use these proxied buffers as Python
buffers. You can convert such a proxy to a Python memoryview using the to_py api. This makes it easy to correctly
convert the array to a Numpy array using numpy .asarray:

32 Chapter 3. Table of contents

Pyodide, Release 0.21.1

self.jsarray = new Float32Array([1,2,3, 4, 5, 6]);
pyodide.runPython(’
from js import jsarray
array = jsarray.to_py(Q)
import numpy as np
numpy_array = np.asarray(array).reshape((2,3))
print (numpy_array)

DH

After manipulating numpy_array you can assign the value back to jsarray using JsProxy.assign:

pyodide.runPython(’
numpy_array[1,1] = 77
jsarray.assign(a)
);
console.log(jsarray); // [1, 2, 3, 4, 77, 6]

The JsProxy.assign and JsProxy.assign_to methods can be used to assign a JavaScript buffer from / to a Python
buffer which is appropriately sized and contiguous. The assignment methods will only work if the data types match,
the total length of the buffers match, and the Python buffer is contiguous.

These APIs are currently experimental, hopefully we will improve them in the future.

Using Python Buffer objects from JavaScript

Python objects supporting the Python Buffer protocol are proxied into JavaScript. The data inside the buffer can be
accessed via the PyProxy. toJs method or the PyProxy.getBuffer method. The toJs API copies the buffer into
JavaScript, whereas the getBuffer method allows low level access to the WASM memory backing the buffer. The
getBuffer API is more powerful but requires care to use correctly. For simple use cases the toJs API should be
preferred.

If the buffer is zero or one-dimensional, then toJs will in most cases convert it to a single TypedArray. However,
in the case that the format of the buffer is 's', we will convert the buffer to a string and if the format is '?"' we will
convert it to an Array of booleans.

If the dimension is greater than one, we will convert it to a nested JavaScript array, with the innermost dimension
handled in the same way we would handle a 1d array.

An example of a case where you would not want to use the toJs method is when the buffer is bitmapped image data. If
for instance you have a 3d buffer shaped 1920 x 1080 x 4, then toJs will be extremely slow. In this case you could use
PyProxy.getBuffer. On the other hand, if you have a 3d buffer shaped 1920 x 4 x 1080, the performance of toJs
will most likely be satisfactory. Typically, the innermost dimension won’t matter for performance.

The PyProxy.getBuffer method can be used to retrieve a reference to a JavaScript typed array that points to the data
backing the Python object, combined with other metadata about the buffer format. The metadata is suitable for use with
a JavaScript ndarray library if one is present. For instance, if you load the JavaScript ndarray package, you can do:

let proxy = pyodide.globals.get("some_numpy_ndarray");
let buffer = proxy.getBuffer();
proxy.destroy();
try {
if (buffer.readonly) {
// We can't stop you from changing a readonly buffer, but it can cause undefined.
—behavior.
throw new Error("Uh-oh, we were planning to change the buffer");

(continues on next page)

3.1. Using Pyodide 33

https://docs.python.org/3/c-api/buffer.html
https://github.com/scijs/ndarray

Pyodide, Release 0.21.1

(continued from previous page)

}
let array = new ndarray(
buffer.data,
buffer.shape,
buffer.strides,
buffer.offset
s
// manipulate array here
// changes will be reflected in the Python ndarray!
} finally {
buffer.release(); // Release the memory when we're done

}

Errors

All entrypoints and exit points from Python code are wrapped in JavaScript try blocks. At the boundary between
Python and JavaScript, errors are caught, converted between languages, and rethrown.

JavaScript errors are wrapped in a JsException. Python exceptions are converted to a PythonError. At present if
an exception crosses between Python and JavaScript several times, the resulting error message won’t be as useful as
one might hope.

In order to reduce memory leaks, the PythonError has a formatted traceback, but no reference to the original Python
exception. The original exception has references to the stack frame and leaking it will leak all the local variables from
that stack frame. The actual Python exception will be stored in sys. last_value so if you need access to it (for instance
to produce a traceback with certain functions filtered out), use that.

Be careful Proxying Stack Frames

If you make a PyProxy of sys.last_value, you should be especially careful to destroy () it when you are done
with it, or you may leak a large amount of memory if you don’t.

The easiest way is to only handle the exception in Python:

pyodide.runPython(’
def reformat_exception():
from traceback import format_exception
Format a modified exception here
this just prints it normally but you could for instance filter some frames

return "".join(
traceback. format_exception(sys.last_type, sys.last_value, sys.last_traceback)
)
s
let reformat_exception = pyodide.globals.get("reformat_exception");
try {

pyodide.runPython(some_code);

} catch(e){
// replace error message
e.message = reformat_exception();
throw e;

34 Chapter 3. Table of contents

https://docs.python.org/3/library/sys.html#sys.last_value

Pyodide, Release 0.21.1

Importing Objects

It is possible to access objects in one language from the global scope in the other language. It is also possible to create
custom namespaces and access objects on the custom namespaces.

Importing Python objects into JavaScript

A Python global variable in the __main__ global scope can be imported into JavaScript using the pyodide.globals.
get method. Given the name of the Python global variable, it returns the value of the variable translated to JavaScript.

let x = pyodide.globals.get("x");

As always, if the result is a PyProxy and you care about not leaking the Python object, you must destroy it when you
are done. It’s also possible to set values in the Python global scope with pyodide.globals. set or remove them with
pyodide.globals.delete:

pyodide.globals.set("x", 2);
pyodide.runPython("print(x)"); // Prints 2

If you execute code with a custom globals dictionary, you can use a similar approach:

let my_py_namespace = pyodide.globals.get("dict")();
pyodide.runPython("x=2", my_py_namespace);

let x = my_py_namespace.get("x");

To access a Python module from JavaScript, use pyodide.pyimport:

let sys = pyodide.pyimport('sys");

Importing JavaScript objects into Python

JavaScript objects in the globalThis global scope can be imported into Python using the js module.

When importing a name from the js module, the js module looks up JavaScript attributes of the globalThis scope
and translates the JavaScript objects into Python.

import js

js.document.title = 'New window title'

from js.document.location import reload as reload_page
reload_page()

You can also assign to JavaScript global variables in this way:

pyodide.runPython("js.x = 2");
console.log(window.x); // 2

You can create your own custom JavaScript modules using pyodide.registerJsModule and they will behave like
the js module except with a custom scope:

let my_js_namespace = { x : 3 };
pyodide.register]sModule("'my_js_namespace", my_js_namespace);
pyodide.runPython(’

(continues on next page)

3.1. Using Pyodide 35

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/globalThis

Pyodide, Release 0.21.1

(continued from previous page)

from my_js_namespace import x
print(x) # 3
my_js_namespace.y = 7

);

console.log(my_js_namespace.y); // 7

3.1.6 Pyodide Python compatibility

Python Standard library

Most of the Python standard library is functional, except for the modules listed in the sections below. A large part of
the CPython test suite passes except for tests skipped in src/tests/python_tests.yaml or via patches.

Optional modules

The following stdlib modules are included by default, however they can be excluded with loadPyodide({
fullStdLib : false }). Individual modules can then be loaded as necessary using pyodide. loadPackage,

o distutils

* test: it is an exception to the above, since it is excluded by default.

Removed modules

The following modules are removed from the standard library to reduce download size and since they currently wouldn’t
work in the WebAssembly VM,

* curses
e dbm

* ensurepip
* idlelib

* 1ib2to3

* tkinter

* turtle.py

* turtledemo
e venv

e pwd

36 Chapter 3. Table of contents

https://github.com/pyodide/pyodide/blob/main/src/tests/python_tests.yaml
https://github.com/pyodide/pyodide/tree/main/cpython/patches

Pyodide, Release 0.21.1

Included but not working modules

The following modules can be imported, but are not functional due to the limitations of the WebAssembly VM:
* multiprocessing
* threading
* sockets

as well as any functionality that requires these.

3.1.7 Interrupting execution

The native Python interrupt system is based on preemptive multitasking but Web Assembly has no support for pre-
emptive multitasking. Because of this, interrupting execution in Pyodide must be achieved via a different mechanism
which takes some effort to set up.

Setting up interrupts

In order to use interrupts you must be using Pyodide in a webworker. You also will need to use a SharedArrayBuffer,
which means that your server must set appropriate security headers. See the MDN docs for more information.

To use the interrupt system, you should create a SharedArrayBuffer on either the main thread or the worker thread
and share it with the other thread. You should use pyodide.setInterruptBuffer to set the interrupt buffer on the
Pyodide thread. When you want to indicate an interrupt, write a 2 into the interrupt buffer. When the interrupt signal
is processed, Pyodide will set the value of the interrupt buffer back to 0.

By default, when the interrupt fires, a KeyboardInterrupt is raised. Using the signal module, it is possible to
register a custom Python function to handle SIGINT. If you register a custom handler function it will be called instead.

Here is a very basic example. Main thread code:

let pyodideWorker = new Worker("pyodideWorker.js");
let interruptBuffer = new Uint8Array(new SharedArrayBuffer(1));
pyodideWorker.postMessage({ cmd: "setInterruptBuffer", interruptBuffer });
function interruptExecution() {

// 2 stands for SIGINT.

interruptBuffer[0] = 2;
}
// imagine that interruptButton is a button we want to trigger an interrupt.
interruptButton.addEventListener(''click"”, interruptExecution);
async function runCode(code) {

// Clear interruptBuffer in case it was accidentally left set after previous code.
—completed.

interruptBuffer[0] = 0;

pyodideWorker.postMessage({ cmd: "runCode", code });
}

Worker code:

self.addEventListener("'message"”, (msg) => {
if (msg.data.cmd === "setInterruptBuffer") {
pyodide.setInterruptBuffer(msg.data.interruptBuffer);
return;

(continues on next page)

3.1. Using Pyodide 37

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer#security_requirements
https://docs.python.org/3/library/signal.html#signal.signal

Pyodide, Release 0.21.1

(continued from previous page)

}

if (msg.data.cmd === "runCode") {
pyodide.runPython(msg.data.code);
return;

}

b;

Allowing JavaScript code to be interrupted

The interrupt system above allows interruption of Python code and also of C code that opts to allow itself to be in-
terrupted by periodically calling PyErr_CheckSignals. There is also a function pyodide.checkInterrupt that
allows JavaScript functions called from Python to check for an interrupt. As a simple example, we can implement an
interruptible sleep function using Atomics.wait:

let blockingSleepBuffer = new Int32Array(new SharedArrayBuffer(4));
function blockingSleep(t) {
for (let i = 0; 1 <t * 20; i++) {
// This Atomics.wait call blocks the thread until the buffer changes or a 50ms.
—timeout elapses.
// Since we won't change the value in the buffer, this blocks for 50ms.
Atomics.wait(blockingSleepBuffer, 0, 0, 50);
// Periodically check for an interrupt to allow a KeyboardInterrupt.
pyodide.checkInterrupt();
}
}

3.1.8 API Reference

JavaScript API

Backward compatibility of the API is not guaranteed at this point.
Globals

Functions:

async loadPyodide(options) Load the main Pyodide wasm module and initialize it.

globalThis.loadPyodide (options)
Load the main Pyodide wasm module and initialize it.

Only one copy of Pyodide can be loaded in a given JavaScript global scope because Pyodide uses global variables
to load packages. If an attempt is made to load a second copy of Pyodide, IoadPyodide will throw an error.
(This can be fixed once Firefox adopts support for ES6 modules in webworkers.)

Arguments

* options.fullStdLib (boolean()) — Load the full Python standard library. Setting this
to false excludes following modules: distutils. Default: true

38 Chapter 3. Table of contents

https://docs.python.org/3/c-api/exceptions.html?highlight=pyerr_checksignals#c.PyErr_CheckSignals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Atomics/wait
https://bugzilla.mozilla.org/show_bug.cgi?id=1247687

Pyodide, Release 0.21.1

options.homedir (string()) — The home directory which Pyodide will use inside virtual
file system. Default: “/home/pyodide”

options.indexURL (string()) — The URL from which Pyodide will load the main Py-
odide runtime and packages. Defaults to the url that pyodide is loaded from with the file
name (pyodide.js or pyodide.mjs) removed. It is recommended that you leave this undefined,
providing an incorrect value can cause broken behavior.

options.jsglobals (object()) —

options.lockFileURL (string())— The URL from which Pyodide will load the Pyodide
“repodata.json” lock file. Defaults to ${indexURL}/repodata.json. You can produce

custom lock files with micropip. freeze

* options.stderr ((msg:
callback. Default: undefined

string) => void()) — Override the standard error output

* options.stdin (() => string()) — Override the standard input callback. Should ask

the user for one line of input.

* options.stdout ((msg:
back. Default: undefined

string) => void()) — Override the standard output call-

Returns Promise<Pyodidelnterface> — The pyodide module.

pyodide

Attributes:

ERRNO_CODES

An alias to the Emscripten ERRNO_CODES map of
standard error codes.

FS An alias to the Emscripten File System API.
PATH An alias to the Emscripten Path API.
globals An alias to the global Python namespace.
loadedPackages The list of packages that Pyodide has loaded.
pyodide_py An alias to the Python pyodide package.
version The Pyodide version.

Functions:
checkInterrupt() Throws a KeyboardInterrupt error if a KeyboardInter-

rupt has been requested via the interrupt buffer.

isPyProxy(jsobj) Is the argument a PyProxy?

async loadPackage(names, messageCallback, error-
Callback)

Load a package or a list of packages over the network.

async loadPackagesFromImports(code,
Callback, errorCallback)

message-

Inspect a Python code chunk and use pyodide.
loadPackage () to install any known packages that the
code chunk imports.

pyimport(mod_name)

Imports a module and returns it.

registerComlink(Comlink)

Tell Pyodide about Comlink.

registerJsModule(name, module)

Registers the JavaScript object module as a JavaScript
module named name.

runPython(code, options)

Runs a string of Python code from JavaScript, using
pyodide. code.eval_code to evaluate the code.

continues on next page

3.1. Using Pyodide

39

https://emscripten.org/docs/api_reference/Filesystem-API.html
https://github.com/emscripten-core/emscripten/blob/main/src/library_path.js

Pyodide, Release 0.21.1

Table 4 — continued from previous page

async runPythonAsync(code, options) Run a Python code string with top level await us-
ing pyodide. code.eval_code_async to evaluate the
code.

setInterruptBuffer(interrupt_buffer) Sets the interrupt buffer to be interrupt_buffer.

toPy(obj, options) Convert the JavaScript object to a Python object as best
as possible.

unpackArchive(buffer, format, options) Unpack an archive into a target directory.

unregisterJslodule(name) Unregisters a JavaScript module with given

name that has been previously registered with
pyodide.registerJsModule () or pyodide.
register_js_module().

Classes:
PyBuffer A class to allow access to a Python data buffers from
JavaScript.
PythonError A JavaScript error caused by a Python exception.

pyodide .ERRNO_CODES

type: any
An alias to the Emscripten ERRNO_CODES map of standard error codes.

pyodide.FS

type: any
An alias to the Emscripten File System API.

This provides a wide range of POSIX-like file/device operations, including mount which can be used to extend
the in-memory filesystem with features like persistence.

While all the file systems implementations are enabled, only the default MEMFS is guaranteed to work in all run-
time settings. The implementations are available as members of FS.filesystems: IDBFS, NODEFS, PROXYFS,
WORKERFS.

pyodide.PATH

type: any
An alias to the Emscripten Path APIL.

This provides a variety of operations for working with file system paths, such as dirname, normalize, and
splitPath.

pyodide.globals

type: PyProxy
An alias to the global Python namespace.

For example, to access a variable called foo in the Python global scope, use pyodide.globals.get("foo")

pyodide.loadedPackages

type: {[key: string]: string}

The list of packages that Pyodide has loaded. Use Object.keys(pyodide.loadedPackages) to get the list
of names of loaded packages, and pyodide.loadedPackages[package_name] to access install location for a
particular package_name.

40

Chapter 3. Table of contents

https://emscripten.org/docs/api_reference/Filesystem-API.html
https://emscripten.org/docs/api_reference/Filesystem-API.html#FS.mount
https://emscripten.org/docs/api_reference/Filesystem-API.html#persistent-data
https://github.com/emscripten-core/emscripten/blob/main/src/library_path.js

Pyodide, Release 0.21.1

pyodide.pyodide_py

type: PyProxy

An alias to the Python pyodide package.

You can use this to call functions defined in the Pyodide Python package from JavaScript.
pyodide.version

type: string

The Pyodide version.

It can be either the exact release version (e.g. 0.1.0), or the latest release version followed by the number of
commits since, and the git hash of the current commit (e.g. .1.0-1-bd84646).

pyodide.checkInterrupt()

Throws a KeyboardInterrupt error if a KeyboardInterrupt has been requested via the interrupt buffer.

This can be used to enable keyboard interrupts during execution of JavaScript code, just as
PyErr_CheckSignals is used to enable keyboard interrupts during execution of C code.

pyodide.isPyProxy (jsobj)
Is the argument a PyProxy?

Arguments
* jsobj (any()) — Object to test.
Returns boolean (typeguard for PyProxy) — Is jsobj a PyProxy?
pyodide.loadPackage (names, messageCallback, errorCallback)

Load a package or a list of packages over the network. This installs the package in the virtual filesystem. The
package needs to be imported from Python before it can be used.

Arguments

* names (string|PyProxy|string[] ()) — Either a single package name or URL or a list of
them. URLSs can be absolute or relative. The URLs must have file name <package-name>.
js and there must be a file called <package-name>.data in the same directory. The argu-
ment can be a PyProxy of a list, in which case the list will be converted to JavaScript and
the PyProxy will be destroyed.

» messageCallback ({} ()) — A callback, called with progress messages (optional)
» errorCallback ({3} ()) — A callback, called with error/warning messages (optional)
Returns Promise<void> —

pyodide.loadPackagesFromImports (code, messageCallback, errorCallback)

Inspect a Python code chunk and use pyodide. loadPackage () to install any known packages that the code
chunk imports. Uses the Python API pyodide. code. find_imports() to inspect the code.

For example, given the following code as input

import numpy as np x = np.array([1l, 2, 3])

loadPackagesFromImports () will call pyodide.loadPackage (['numpy']).
Arguments
» code (string()) — The code to inspect.

» messageCallback ({} ()) - The messageCallback argument of pyodide. loadPackage
(optional).

3.1. Using Pyodide 41

Pyodide, Release 0.21.1

» errorCallback ({}()) - The errorCallback argument of pyodide. loadPackage (op-
tional).

Returns Promise<void> —

pyodide.pyimport (mod_name)

Imports a module and returns it.

Warning
This function has a completely different behavior than the old removed pyimport function!

pyimport is roughly equivalent to:

pyodide.runPython(import pkgname } ; pkgname }) ;

except that the global namespace will not change.

Example:

let sysmodule = pyodide.pyimport("sys");
let recursionLimit = sysmodule.getrecursionlimit();

Arguments
* mod_name (string()) — The name of the module to import

Returns PyProxy — A PyProxy for the imported module

pyodide.registerComlink (Comlink)

Tell Pyodide about Comlink. Necessary to enable importing Comlink proxies into Python.
Arguments
e Comlink (any()) —

pyodide.registerJsModule (name, module)

Registers the JavaScript object module as a JavaScript module named name. This module can then be imported
from Python using the standard Python import system. If another module by the same name has already been
imported, this won’t have much effect unless you also delete the imported module from sys.modules. This
calls the {any} pyodide_py" API pyodide.register_js_module().

Arguments
* name (string()) — Name of the JavaScript module to add
» module (object()) — JavaScript object backing the module

pyodide.runPython(code, options)

Runs a string of Python code from JavaScript, using pyodide. code. eval_code to evaluate the code. If the
last statement in the Python code is an expression (and the code doesn’t end with a semicolon), the value of the
expression is returned.

Positional globals argument

In Pyodide v0.19, this function took the globals parameter as a positional argument rather than as a named
argument. In v0.20 this will still work but it is deprecated. It will be removed in v0.21.

42 Chapter 3. Table of contents

Pyodide, Release 0.21.1

Arguments
* code (string()) — Python code to evaluate

* options.globals (PyProxy()) — An optional Python dictionary to use as the globals.
Defaults to pyodide.globals.

Returns any — The result of the Python code translated to JavaScript. See the documentation for
pyodide. code.eval_code for more info.

pyodide.runPythonAsync (code, options)

Run a Python code string with top level await using pyodide. code.eval_code_async to evaluate the code.
Returns a promise which resolves when execution completes. If the last statement in the Python code is an
expression (and the code doesn’t end with a semicolon), the returned promise will resolve to the value of this
expression.

For example:

let result = await pyodide.runPythonAsync(’
from js import fetch
response = await fetch("./repodata.json")
packages = await response.json()
If final statement is an expression, its value is returned to JavaScript
len(packages.packages.object_keys())
s
console.log(result); // 79

Python imports

Since pyodide 0.18.0, you must call IoadPackagesFromImports () to import any python packages referenced
via import statements in your code. This function will no longer do it for you.

Positional globals argument

In Pyodide v0.19, this function took the globals parameter as a positional argument rather than as a named
argument. In v0.20 this will still work but it is deprecated. It will be removed in v0.21.

Arguments
» code (string()) — Python code to evaluate

* options.globals (PyProxy()) — An optional Python dictionary to use as the globals.
Defaults to pyodide.globals.

Returns Promise<any> — The result of the Python code translated to JavaScript.

pyodide.setInterruptBuffer (interrupt_buffer)

Sets the interrupt buffer to be interrupt_buffer. This is only useful when Pyodide is used in a webworker.
The buffer should be a SharedArrayBuffer shared with the main browser thread (or another worker). In that
case, signal signum may be sent by writing signum into the interrupt buffer. If signum does not satisfy 0 <
signum < NSIG it will be silently ignored. NSIG is 65 (internally signals are indicated by a bitflag).

You can disable interrupts by calling setInterruptBuffer(undefined).

If you wish to trigger a KeyboardInterrupt, write SIGINT (a 2), into the interrupt buffer.

3.1. Using Pyodide 43

Pyodide, Release 0.21.1

By default SIGINT raises a KeyboardInterrupt and all other signals are ignored. You can install custom signal
handlers with the signal module. Even signals that normally have special meaning and can’t be overridden like
SIGKILL and SIGSEGV are ignored by default and can be used for any purpose you like.

Arguments
e interrupt_buffer (TypedArray()) —

pyodide. toPy (obj, options)
Convert the JavaScript object to a Python object as best as possible.

This is similar to JsProxy. to_py but for use from JavaScript. If the object is immutable or a PyProxy, it will
be returned unchanged. If the object cannot be converted into Python, it will be returned unchanged.

See JavaScript to Python for more information.
Arguments
* obj (any()) -
» options.depth (number()) — Optional argument to limit the depth of the conversion.

e options.defaultConverter ((value: any, converter: {3},
cacheConversion: {}) => any()) — Optional argument to convert objects with
no default conversion. See the documentation of JsProxy. to_py.

Returns any — The object converted to Python.

pyodide.unpackArchive (buffer, format, options)

Unpack an archive into a target directory.

Positional globals argument :class: warning

In Pyodide v0.19, this function took the extract_dir parameter as a positional argument rather than as a named
argument. In v0.20 this will still work but it is deprecated. It will be removed in v0.21.

Arguments
* buffer (TypedArray|ArrayBuffer()) — The archive as an ArrayBuffer or TypedArray.

» format (string()) — The format of the archive. Should be one of the formats recognized
by shutil.unpack_archive. By default the options are ‘bztar’, ‘gztar’, ‘tar’, ‘zip’, and ‘wheel’.

Several synonyms are accepted for each format, e.g., for ‘gztar’ any of ‘.gztar’, ‘.tar.gz’, ‘.tgz’,
‘tar.gz’ or ‘tgz’ are considered to be synonyms.

* options.extractDir (string()) — The directory to unpack the archive into. Defaults to
the working directory.

pyodide.unregister]sModule (name)

Unregisters a JavaScript module with given name that has been previously registered with pyodide.
registerJsModule() or pyodide.register_js_module(). If a JavaScript module with that name does not
already exist, will throw an error. Note that if the module has already been imported, this won’t have much effect
unless you also delete the imported module from sys.modules. This calls the pyodide_py API pyodide.
unregister_js_module().

Arguments

* name (string()) — Name of the JavaScript module to remove

44 Chapter 3. Table of contents

Pyodide, Release 0.21.1

class pyodide.PyBuffer()

A class to allow access to a Python data buffers from JavaScript. These are produced by PyProxy.getBuffer
and cannot be constructed directly. When you are done, release it with the release method. See Python buffer
protocol documentation for more information.

To find the element x[a_1, ..., a_n], you could use the following code:

function multiIndexToIndex(pybuff, multiIndex){
if(multindex.length !==pybuff.ndim) {
throw new Error("Wrong length index");
}
let idx = pybuff.offset;
for(let i = 0; i < pybuff.ndim; i++){
if(multiIndex[i] < 0){
multiIndex[i] = pybuff.shape[i] - multiIndex[i];
}
if(multiIndex[i] < O || multiIndex[i] >= pybuff.shape[i]){
throw new Error("Index out of range");
}
idx += multiIndex[i] * pybuff.stride[i];
}
return idx;

}
console.log("entry is", pybuff.data[multiIndexToIndex(pybuff, [2, 0, -11)1);

Contiguity

If the buffer is not contiguous, the data TypedArray will contain data that is not part of the buffer. Modifying
this data may lead to undefined behavior.

Readonly buffers

If buffer.readonly is true, you should not modify the buffer. Modifying a readonly buffer may lead to
undefined behavior.

Converting between TypedArray types

The following naive code to change the type of a typed array does not work:

// Incorrectly convert a TypedArray.
// Produces a Uintl6Array that points to the entire WASM memory!
let myarray = new Uintl6Array(buffer.data.buffer);

Instead, if you want to convert the output TypedArray, you need to say:

// Correctly convert a TypedArray.

let myarray = new Uintl6Array(
buffer.data.buffer,
buffer.data.byteOffset,
buffer.data.byteLength

);

3.1. Using Pyodide 45

https://docs.python.org/3/c-api/buffer.html
https://docs.python.org/3/c-api/buffer.html

Pyodide, Release 0.21.1

PyBuffer.c_contiguous
type: boolean

Is it C contiguous?

PyBuffer.data
type: TypedArray

The actual data. A typed array of an appropriate size backed by a segment of the WASM memory.

The type argument of PyProxy.getBuffer determines which sort of TypedArray this is. By default
PyProxy.getBuffer will look at the format string to determine the most appropriate option.

PyBuffer.f_contiguous
type: boolean

Is it Fortran contiguous?
PyBuffer. format
type: string
The format string for the buffer. See the Python documentation on format strings.

PyBuffer.itemsize

type: number

How large is each entry (in bytes)?
PyBuffer.nbytes

type: number

The total number of bytes the buffer takes up. This is equal to buff.data.byteLength.
PyBuffer.ndim

type: number

The number of dimensions of the buffer. If ndim is 0, the buffer represents a single scalar or struct. Other-
wise, it represents an array.

PyBuffer.offset

type: number

The offset of the first entry of the array. For instance if our array is 3d, then you will find array[0,0,0]
at pybuf.data[pybuf.offset]

PyBuffer.readonly
type: boolean

If the data is readonly, you should not modify it. There is no way for us to enforce this, but it may cause
very weird behavior.

PyBuffer.shape
type: number][]

The shape of the buffer, that is how long it is in each dimension. The length will be equal to ndim. For
instance, a 2x3x4 array would have shape [2, 3, 4].

PyBuffer.strides
type: number]]

An array of of length ndim giving the number of elements to skip to get to a new element in each dimension.
See the example definition of a multiIndexToIndex function above.

46

Chapter 3. Table of contents

https://docs.python.org/3/library/struct.html#format-strings

Pyodide, Release 0.21.1

PyBuffer.release()

Release the buffer. This allows the memory to be reclaimed.

class pyodide.PythonError (message, error_address)

A JavaScript error caused by a Python exception.

In order to reduce the risk of large memory leaks, the PythonError contains no reference to the Python exception
that caused it. You can find the actual Python exception that caused this error as sys.last_value.

See Errors for more information.

Avoid Stack Frames

If you make a PyProxy of sys.last_value, you should be especially careful to destroy() it when you are
done. You may leak a large amount of memory including the local variables of all the stack frames in the traceback
if you don’t. The easiest way is to only handle the exception in Python.

Arguments
» message (string()) —

e error_address (number()) —

PyProxy

A PyProxy is an object that allows idiomatic use of a Python object from JavaScript. See Proxying from Python into

JavaScript.
Attributes:

[toStringTag]

length

type

Functions:

[iterator]()

This translates to the Python code iter(obj).

apply(jsthis, jsargs)

bind(placeholder)

No-op bind function for compatibility with existing li-
braries

call(jsthis, ...jsargs)

callKwargs(...jsargs)

Call the function with key word arguments.

async catch(onRejected)

Runs asyncio.ensure_future(awaitable) and ex-
ecutes onRejected(error) if the future fails.

copy()

Make a new PyProxy pointing to the same Python object.

delete(key)

This translates to the Python code del obj[key].

destroy(destroyed_msg)

Destroy the PyProxy.

continues on next page

3.1. Using Pyodide

47

https://docs.python.org/3/library/sys.html#sys.last_value

Pyodide, Release 0.21.1

Table 7 — continued from previous page

async finally(onFinally)

Runs asyncio.ensure_future(awaitable) and ex-
ecutes onFinally(error) when the future resolves.

get(key) This translates to the Python code obj [key].

getBuffer(type) Get a view of the buffer data which is usable from
JavaScript.

has(key) This translates to the Python code key in obj.

isAwaitable() Check whether the PyProxy is awaitable.

isBuffer() Check whether the PyProxy is a buffer.

isCallable() Check whether the PyProxy is a Callable.

isIterable() Check whether the PyProxy is iterable.

isIterator() Check whether the PyProxy is iterable.

new PyProxyClass()

next(arg=undefined)

This translates to the Python code next (obj).

set(key, value)

This translates to the Python code obj[key] = value.

supportsGet() Check whether the PyProxy . get method is available on
this PyProxy.

supportsHas() Check whether the PyProxy . has method is available on
this PyProxy.

supportsLength() Check whether the PyProxy.length getter is available
on this PyProxy.

supportsSet() Check whether the PyProxy. set method is available on
this PyProxy.

async then(onFulfilled, onRejected)

Runs asyncio.ensure_future(awaitable), exe-
cutes onFulfilled(result) when the Future re-
solves successfully, executes onRejected(error)
when the Future fails.

toJs(options)

Converts the PyProxy into a JavaScript object as best as
possible.

toString()

PyProxy. [toStringTag]

type: string
PyProxy.length

type: number
PyProxy.type

type: string
PyProxy.[iterator] ()

This translates to the Python code iter (obj). Return an iterator associated to the proxy. See the documentation

for Symbol.iterator.

Present only if the proxied Python object is iterable (i.e., has an __iter__ method).

This will be used implicitly by for(let x of proxy){}.

Returns Iterator<any, any, any> —

PyProxy.apply (jsthis, jsargs)

Arguments

e jsthis (PyProxyClass()) -

48

Chapter 3. Table of contents

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol/iterator

Pyodide, Release 0.21.1

* jsargs (any(Q) -
Returns any —

PyProxy.bind (placeholder)
No-op bind function for compatibility with existing libraries

Arguments
e placeholder (any()) —
Returns PyProxyCallableMethods —
PyProxy.call (jsthis, ...jsargs)

Arguments
e jsthis (PyProxyClass()) -
* jsargs (any () —

Returns any —

PyProxy.callKwargs(...jsargs)
Call the function with key word arguments. The last argument must be an object with the keyword arguments.

Arguments
* jsargs (any () —
Returns any —

PyProxy.catch(onRejected)
Runs asyncio.ensure_future(awaitable) and executes onRejected(error) if the future fails.

See the documentation for Promise.catch.
Present only if the proxied Python object is awaitable.
Arguments
» onRejected ({}()) — A handler called with the error as an argument if the awaitable fails.
Returns Promise<any> — The resulting Promise.

PyProxy.copy()
Make a new PyProxy pointing to the same Python object. Useful if the PyProxy is destroyed somewhere else.

Returns PyProxy —

PyProxy.delete (key)
This translates to the Python code del obj[key].

Present only if the proxied Python object has a __delitem__ method.
Arguments
* key (any()) — The key to delete.
PyProxy.destroy (destroyed_msg)

Destroy the PyProxy. This will release the memory. Any further attempt to use the object will raise an error.

In a browser supporting FinalizationRegistry Pyodide will automatically destroy the PyProxy when it is garbage
collected, however there is no guarantee that the finalizer will be run in a timely manner so it is better to destroy
the proxy explicitly.

Arguments

3.1. Using Pyodide 49

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/catch
https://docs.python.org/3/library/asyncio-task.html?highlight=awaitable#awaitables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/FinalizationRegistry

Pyodide, Release 0.21.1

* destroyed_msg (string()) — The error message to print if use is attempted after destroy-
ing. Defaults to “Object has already been destroyed”.

PyProxy . finally (onFinally)

Runs asyncio.ensure_future(awaitable) and executes onFinally(error) when the future resolves.
See the documentation for Promise.finally.
Present only if the proxied Python object is awaitable.

Arguments

e onFinally ({}()) — A handler that is called with zero arguments when the awaitable re-
solves.

Returns Promise<any> — A Promise that resolves or rejects with the same result as the original
Promise, but only after executing the onFinally handler.

PyProxy.get (key)
This translates to the Python code obj [key].

Present only if the proxied Python object has a __getitem__ method.
Arguments
* key (any()) — The key to look up.
Returns any — The corresponding value.

PyProxy.getBuffer (rype)

Get a view of the buffer data which is usable from JavaScript. No copy is ever performed.
Present only if the proxied Python object supports the Python Buffer Protocol.

We do not support suboffsets, if the buffer requires suboffsets we will throw an error. JavaScript nd array libraries
can’t handle suboffsets anyways. In this case, you should use the toJs api or copy the buffer to one that doesn’t
use suboffets (using e.g., numpy.ascontiguousarray).

If the buffer stores big endian data or half floats, this function will fail without an explicit type argument. For
big endian data you can use toJs. DataViews have support for big endian data, so you might want to pass
'dataview' as the type argument in that case.

Arguments

* type (string()) — The type of the PyBuffer.data field in the output. Should be one of:
lli8|l, llusll, llusclampedll’ llil6ll’ ||u16ll’ Iliazll’ Ilu32ll’ |li32l|’ |lu32|l, lli64|l, llu64ll,
"£32", "£64, or "dataview". This argument is optional, if absent getBuffer will try to
determine the appropriate output type based on the buffer format string.

Returns PyBuffer — PyBuffer

PyProxy .has (key)
This translates to the Python code key in obj.

Present only if the proxied Python object has a __contains__ method.
Arguments
* key (any()) — The key to check for.

Returns boolean — Is key present?

50 Chapter 3. Table of contents

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/finally
https://docs.python.org/3/library/asyncio-task.html?highlight=awaitable#awaitables
https://docs.python.org/3/c-api/buffer.html
https://numpy.org/doc/stable/reference/generated/numpy.ascontiguousarray.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DataView
https://docs.python.org/3/library/struct.html#format-strings

Pyodide, Release 0.21.1

PyProxy.isAwaitable()

Check whether the PyProxy is awaitable. A Typescript type guard, if this function returns true Typescript con-
siders the PyProxy to be a Promise.

Returns boolean (typeguard for PyProxyAwaitable) —

PyProxy.isBuffer()
Check whether the PyProxy is a buffer. A Typescript type guard for PyProxy.getBuffer.

Returns boolean (typeguard for PyProxyBuffer) —

PyProxy.isCallable()

Check whether the PyProxy is a Callable. A Typescript type guard, if this returns true then Typescript considers
the Proxy to be callable of signature (args... : any[]) => PyProxy | number | bigint | string
| boolean | undefined.

Returns boolean (typeguard for PyProxyCallable) —

PyProxy.isIterable()
Check whether the PyProxy is iterable. A Typescript type guard for PyProxy. [iterator].

Returns boolean (typeguard for PyProxylterable) —

PyProxy.isIterator()
Check whether the PyProxy is iterable. A Typescript type guard for PyProxy.next.

Returns boolean (typeguard for PyProxylterator) —
PyProxy.new PyProxyClass()

PyProxy.next (arg=undefined)

This translates to the Python code next (obj). Returns the next value of the generator. See the documentation
for Generator.prototype.next. The argument will be sent to the Python generator.

This will be used implicitly by for(let x of proxy){}.
Present only if the proxied Python object is a generator or iterator (i.e., has a send or __next__ method).
Arguments
* arg (any()) -

Returns IteratorResult<any, any> — An Object with two properties: done and value. When

the generator yields some_value, next returns {done : false, value : some_value}.
When the generator raises a StopIteration(result_value) exception, next returns {done
true, value : result_value}.

PyProxy.set (key, value)
This translates to the Python code obj[key] = value.

Present only if the proxied Python object has a __setitem__ method.
Arguments
* key (any()) — The key to set.
e value (any()) — The value to set it to.

PyProxy.supportsGet()
Check whether the PyProxy.get method is available on this PyProxy. A Typescript type guard.

Returns boolean (typeguard for PyProxyWithGet) —

3.1. Using Pyodide 51

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator/next

Pyodide, Release 0.21.1

PyProxy.supportsHas()
Check whether the PyProxy.has method is available on this PyProxy. A Typescript type guard.

Returns boolean (typeguard for PyProxyWithHas) —

PyProxy.supportsLength()
Check whether the PyProxy.length getter is available on this PyProxy. A Typescript type guard.

Returns boolean (typeguard for PyProxyWithLength) —

PyProxy.supportsSet()
Check whether the PyProxy. set method is available on this PyProxy. A Typescript type guard.

Returns boolean (typeguard for PyProxyWithSet) —

PyProxy.then(onFulfilled, onRejected)

Runs asyncio.ensure_future(awaitable), executes onFulfilled(result) when the Future resolves
successfully, executes onRejected(error) when the Future fails. Will be used implicitly by await obj.

See the documentation for Promise.then
Present only if the proxied Python object is awaitable.
Arguments

» onFulfilled ({}()) — A handler called with the result as an argument if the awaitable
succeeds.

* onRejected ({}()) — A handler called with the error as an argument if the awaitable fails.
Returns Promise<any> — The resulting Promise.

PyProxy.toJls (options)

Converts the PyProxy into a JavaScript object as best as possible. By default does a deep conversion, if a shallow

conversion is desired, you can use proxy.toJs({depth : 1}). See Explicit Conversion of PyProxy for more
info.
Arguments
e options.create_pyproxies (boolean()) - If false, tols will throw a

ConversionError rather than producing a PyProxy.

* options.depth (number())— How many layers deep to perform the conversion. Defaults
to infinite

* options.pyproxies (PyProxy[]()) — If provided, toJs will store all PyProxies created
in this list. This allows you to easily destroy all the PyProxies by iterating the list without
having to recurse over the generated structure. The most common use case is to create a new
empty list, pass the list as pyproxies, and then later iterate over pyproxies to destroy all of
created proxies.

» options.default_converter ((obj: PyProxy, convert: {3},
cacheConversion: {}) => any()) — Optional argument to convert objects with
no default conversion. See the documentation of pyodide. ffi.to_js.

e options.dict_converter ((array: Iterable<[key: string, value:
any]>) => any()) — A function to be called on an iterable of pairs [key, value].
Convert this iterable of pairs to the desired output. For instance, Object. fromEntries
would convert the dict to an object, Array . from converts it to an array of entries, and (it)
=> new Map(it) converts it to a Map (which is the default behavior).

Returns any — The JavaScript object resulting from the conversion.

52 Chapter 3. Table of contents

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then
https://docs.python.org/3/library/asyncio-task.html?highlight=awaitable#awaitables

Pyodide, Release 0.21.1

PyProxy.toString()

Returns string —

Python API

Backward compatibility of the API is not guaranteed at this point.

JavaScript Modules

By default there are two JavaScript modules. More can be added with pyodide.registerisModule. You can import
these modules using the Python import statement in the normal way.

js The global JavaScript scope.
pyodide_js | The JavaScript Pyodide module.

Python Modules
pyodide. Utilities for evaluating Python and JavaScript code.
code
pyodide. Similar to the Python builtin code module but handles top level await. Used for implementing the
console Pyodide console.
pyodide. The JsProxy class and utilities to help interact with JavaScript code.
ffi
pyodide. Defines pyfetch and other functions for making network requests.
http
pyodide. The Pyodide event loop implementation. This is automatically configured correctly for most use
webloop cases it is unlikely you will need it outside of niche use cases.

pyodide.code

Classes:

CodeRunner(source, *[, return_mode, mode, ...]) This class allows fine control over the execution of a code
block.

Functions:
eval_code(sourcel, globals, locals, ...]) Runs a string as Python source code.
eval_code_async(source[, globals, locals, ...]) Runs a code string asynchronously.
find_imports(source) Finds the imports in a Python source code string
run_js(code, /) A wrapper for the JavaScript 'eval' function.
should_quiet(source) Should we suppress output?

class pyodide.code.CodeRunner (source: str, *, return_mode: Literal['last_expr', 'last_expr_or_assign', 'none']

= 'last_expr', mode: str = 'exec’, quiet_trailing_semicolon: bool = True,
filename: str = '<exec>', flags: int = 0)

This class allows fine control over the execution of a code block.

It is primarily intended for REPLs and other sophisticated consumers that may wish to add their own AST
transformations, separately signal to the user when parsing is complete, etc. The simpler eval_code and
eval_code_async apis should be preferred when their flexibility suffices.

3.1. Using Pyodide 53

Pyodide, Release 0.21.1

Parameters
* source (str) — The Python source code to run.

* return_mode (str) — Specifies what should be returned, must be one of 'last_expr',
'last_expr_or_assign' or 'none'. On other values an exception is raised.
'last_expr' by default.

— 'last_expr' —return the last expression
— 'last_expr_or_assign' —return the last expression or the last assignment.
— 'none' — always return None.

* quiet_trailing_semicolon (bool) — Specifies whether a trailing semicolon should sup-
press the result or not. When this is True executing "1+1 ;" returns None, when itis False,
executing "1+1 ;" return 2. True by default.

» filename (str) — The file name to use in error messages and stack traces. '<exec>' by
default.

* mode (str)—The “mode” to compile in. One of "exec", "single", or "eval". Defaults to
"exec". For most purposes it’s unnecessary to use this argument. See the documentation for
the built-in compile <https://docs.python.org/3/library/functions.html#compile> function.

» flags (int) — The flags to compile with. See the documentation for the built-in compile
<https://docs.python.org/3/library/functions.html#compile> function.

e Attributes —

ast [The ast from parsing source. If you wish to do an ast transform,] modify this variable
before calling CodeRunner. compile.

code [Once you call CodeRunner.compile the compiled code will] be available in the
code field. You can modify this variable before calling CodeRunner.run to do a code
transform.
compile() — _pyodide._base.CodeRunner

Compile the current value of self.ast and store the result in self.code.
Can only be used once. Returns self (chainable).

run(globals: Optional[dict[str, Any]] = None, locals: Optional[dict[str, Any]] = None) — Optional[Any]
Executes self.code.

Can only be used after calling compile. The code may not use top level await, use CodeRunner. run_async
for code that uses top level await.

Parameters

* globals (dict)— The global scope in which to execute code. This is used as the globals
parameter for exec. If globals is absent, a new empty dictionary is used. See the exec
documentation for more info.

¢ locals (dict) — The local scope in which to execute code. This is used as the locals
parameter for exec. If locals is absent, the value of globals is used. See the exec
documentation for more info.

Returns If the last nonwhitespace character of source is a semicolon, return None. If the last
statement is an expression, return the result of the expression. Use the return_mode and
quiet_trailing_semicolon parameters to modify this default behavior.

Return type Any

54 Chapter 3. Table of contents

https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/functions.html#exec

Pyodide, Release 0.21.1

async run_async (globals: Optional[dict[str, Any]] = None, locals: Optional[dict[str, Any]] = None) —
None

Runs self.code which may use top level await.

Can only be used after calling CodeRunner. compile. If self.code uses top level await, automatically
awaits the resulting coroutine.

Parameters

* globals (dict)— The global scope in which to execute code. This is used as the globals
parameter for exec. If globals is absent, a new empty dictionary is used. See the exec
documentation for more info.

¢ locals (dict) — The local scope in which to execute code. This is used as the locals
parameter for exec. If locals is absent, the value of globals is used. See the exec
documentation for more info.

Returns If the last nonwhitespace character of source is a semicolon, return None. If the last
statement is an expression, return the result of the expression. Use the return_mode and
quiet_trailing_semicolon parameters to modify this default behavior.

Return type Any
pyodide.code.eval_code(source: str, globals: Optional[dict[str, Any]] = None, locals: Optional[dict/[str, Any]]

= None, *, return_mode: Literal['last_expr’, 'last_expr_or_assign', none'] =
'last_expr', quiet_trailing_semicolon: bool = True, filename: str = '<exec>', flags: int
=0) — Any
Runs a string as Python source code.
Parameters
» source (str) — The Python source code to run.

* globals (dict) — The global scope in which to execute code. This is used as the globals
parameter for exec. If globals is absent, a new empty dictionary is used. See the exec
documentation for more info.

* locals (dict) — The local scope in which to execute code. This is used as the locals
parameter for exec. If locals is absent, the value of globals is used. See the exec docu-
mentation for more info.

* return_mode (str) — Specifies what should be returned, must be one of 'last_expr',
'last_expr_or_assign' or 'none'. On other values an exception is raised.
'last_expr' by default.

— 'last_expr' —return the last expression
— 'last_expr_or_assign' —return the last expression or the last assignment.
— 'none' — always return None.

* quiet_trailing_semicolon (bool) — Specifies whether a trailing semicolon should sup-
press the result or not. When this is True executing "1+1 ;" returns None, when it is False,
executing "1+1 ;" return 2. True by default.

» filename (str) — The file name to use in error messages and stack traces. '<exec>' by
default.

Returns If the last nonwhitespace character of source is a semicolon, return None. If the last
statement is an expression, return the result of the expression. Use the return_mode and
quiet_trailing_semicolon parameters to modify this default behavior.

Return type Any

3.1. Using Pyodide 55

https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/functions.html#exec

Pyodide, Release 0.21.1

async pyodide.code.eval_code_async(source: str, globals: Optional[dict[str, Any]] = None, locals:
Optional[dict[str, Any]] = None, *, return_mode: Literal['last_expr’,
'last_expr_or_assign', 'none'] = 'last_expr', quiet_trailing_semicolon:
bool = True, filename: str = '<exec>', flags: int = 0) — Any

Runs a code string asynchronously.
Uses PyCF_ALLOW_TOP_LEVEL_AWAIT to compile the code.
Parameters
* source (str) — The Python source code to run.

* globals (dict) — The global scope in which to execute code. This is used as the globals
parameter for exec. If globals is absent, a new empty dictionary is used. See the exec
documentation for more info.

* locals (dict) — The local scope in which to execute code. This is used as the locals
parameter for exec. If locals is absent, the value of globals is used. See the exec docu-
mentation for more info.

» return_mode (str) — Specifies what should be returned, must be one of 'last_expr',
'last_expr_or_assign' or 'none'. On other values an exception is raised.
'last_expr' by default.

— 'last_expr' —return the last expression
— 'last_expr_or_assign' —return the last expression or the last assignment.
— 'none' — always return None.

* quiet_trailing_semicolon (bool) — Specifies whether a trailing semicolon should sup-
press the result or not. When this is True executing "1+1 ;" returns None, when itis False,
executing "1+1 ;" return 2. True by default.

o filename (str) — The file name to use in error messages and stack traces. '<exec>' by
default.

Returns If the last nonwhitespace character of source is a semicolon, return None. If the last
statement is an expression, return the result of the expression. Use the return_mode and
quiet_trailing_semicolon parameters to modify this default behavior.

Return type Any

pyodide.code. find_imports (source: str) — list[str]

Finds the imports in a Python source code string
Parameters source (str) — The Python source code to inspect for imports.

Returns A list of module names that are imported in source. If source is not syntactically correct
Python code (after dedenting), returns an empty list.

Return type List[str]

56 Chapter 3. Table of contents

https://docs.python.org/3/library/ast.html#ast.PyCF_ALLOW_TOP_LEVEL_AWAIT
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/functions.html#exec
https://docs.python.org/3/library/functions.html#exec

Pyodide, Release 0.21.1

Examples

>>> from pyodide import find_imports

>>> source = "import numpy as np; import scipy.stats"
>>> find_imports(source)

["'numpy', 'scipy']

pyodide.code.run_js(code: str,/) — Any

A wrapper for the JavaScript ‘eval” function.

Runs ‘code’ as a Javascript code string and returns the result. Unlike JavaScript’s ‘eval’, if ‘code’ is not a string

we raise a TypeError.

pyodide.code.should_quiet (source: str) — bool
Should we suppress output?

Returns True if the last nonwhitespace character of code is a semicolon.

Examples

>>> should_quiet('l + 1")

False

>>> should_quiet('1 + 1 ;")

True

>>> should_quiet('l + 1 # comment ;')
False

pyodide.console

Classes:

Console([globals, stdin_callback, ...]) Interactive Pyodide console

ConsoleFuture(syntax_check) A future with extra fields used as the return value for
Console apis.

PyodideConsole([globals, stdin_callback, ...]) A subclass of Console that wuses pyodide.
loadPackagesFromImports before running
code.

Functions:
repr_shorten(value[, limit, split, separator]) Compute the string representation of value and shorten

it if necessary.

class pyodide.console.Console(globals: Optional[dict[str, Any]] = None, *, stdin_callback:
Optional[collections.abc.Callable[[int], str]] = None, stdout_callback:

Optional[collections.abc.Callable[[str], None]] = None, stderr_callback:

Optional[collections.abc.Callable[[str], None]] = None,

persistent_stream_redirection: bool = False, filename: str = '<console>")

Interactive Pyodide console

An interactive console based on the Python standard library code.InteractiveConsole that manages stream redi-

rections and asynchronous execution of the code.

3.1. Using Pyodide

Pyodide, Release 0.21.1

The stream callbacks can be modified directly as long as persistent_stream_redirection isn’t in effect.
Parameters

* globals (dict) — The global namespace in which to evaluate the code. Defaults to a new
empty dictionary.

e stdin_callback (Callable[[int], str]) — Function to call at each read from sys.
stdin. Defaults to None.

e stdout_callback (Callable[[str], None]) — Function to call at each write to sys.
stdout. Defaults to None.

e stderr_callback (Callable[[str], None]) — Function to call at each write to sys.
stderr. Defaults to None.

* persistent_stream_redirection (bool) — Should redirection of standard streams be
kept between calls to runcode? Defaults to False.

» filename (str) — The file name to report in error messages. Defaults to <console>.

globals

The namespace used as the global
Type Dict[str, Anyl]

stdin_callback
Function to call at each read from sys.stdin.

Type Callback[[], str]

stdout_callback

Function to call at each write to sys.stdout.
Type Callback[[str], None]

stderr_callback

Function to call at each write to sys.stderr.
Type Callback[[str], None]
buffer

The list of strings that have been pushed to the console.
Type List[str]

completer_word_break_characters

The set of characters considered by complete to be word breaks.
Type str

complete (source: str) — tuple[list[str], int]

Use Python’s rlcompleter to complete the source string using the globals namespace.

Finds last “word” in the source string and completes it with rlcompleter. Word breaks are determined by
the set of characters in completer_word_break_characters.

Parameters source (str)— The source string to complete at the end.
Returns
» completions (List[str]) — A list of completion strings.

* start (int) — The index where completion starts.

58 Chapter 3. Table of contents

Pyodide, Release 0.21.1

Examples

>>> shell = Console()
>>> shell.complete("str.isa")

(['str.isalnum(', 'str.isalpha(', 'str.isascii('], 0)
>>> shell.complete('a = ; str.isa')
(['str.isalnum(', 'str.isalpha(', 'str.isascii('], 8)

formatsyntaxerror (e: Exception) — str
Format the syntax error that just occurred.

This doesn’t include a stack trace because there isn’t one. The actual error object is stored into
sys.last_value.

formattraceback(e: BaseException) — str
Format the exception that just occurred.

The actual error object is stored into sys.last_value.

persistent_redirect_streams() — None
Redirect stdin/stdout/stderr persistently

persistent_restore_streams() — None
Restore stdin/stdout/stderr if they have been persistently redirected

push(line: str) — pyodide.console.ConsoleFuture
Push a line to the interpreter.

The line should not have a trailing newline; it may have internal newlines. The line is appended to a buffer
and the interpreter’s runsource() method is called with the concatenated contents of the buffer as source.
If this indicates that the command was executed or invalid, the buffer is reset; otherwise, the command is
incomplete, and the buffer is left as it was after the line was appended.

The return value is the result of calling Console.runsource on the current buffer contents.

redirect_streams() — collections.abc.Generator[None, None, None]

A context manager to redirect standard streams.
This supports nesting.

async runcode (source: str, code: _pyodide._base.CodeRunner) — Any
Execute a code object and return the result.

runsource (source: str, filename: str = '<console>") — pyodide.console.ConsoleFuture

Compile and run source code in the interpreter.
Returns
Return type ConsoleFuture

class pyodide.console.ConsoleFuture (syntax_check: Literal['incomplete’, 'syntax-error’, 'complete'])
A future with extra fields used as the return value for Console apis.

syntax_check

One of "incomplete", "syntax-error", or "complete". If the value is "incomplete" then the future
has already been resolved with result equal to None. If the value is "syntax-error", the Future has
already been rejected with a SyntaxError. If the value is "complete", then the input complete and
syntactically correct.

Type str

3.1. Using Pyodide 59

Pyodide, Release 0.21.1

formatted_error

If the Future is rejected, this will be filled with a formatted version of the code. This is a convenience that
simplifies code and helps to avoid large memory leaks when using from JavaScript.

Type str

class pyodide.console.PyodideConsole(globals: Optional[dict[str, Any]] = None, *, stdin_callback:
Optional[collections.abc.Callable[[int], str]] = None,
stdout_callback: Optional[collections.abc.Callable[[str], None]] =
None, stderr_callback: Optional[collections.abc.Callable[[str],
None]] = None, persistent_stream_redirection: bool = False,
filename: str = '<console>")

A subclass of Console that uses pyodide. loadPackagesFromImports before running the code.

pyodide.console.repr_shorten(value: Any, limit: int = 1000, split: Optional[int] = None, separator: str =
L) = str

Compute the string representation of value and shorten it if necessary.

If itis longer than 1imit then return the firsts split characters and the last split characters separated by “..." .
Default value for split is limit // 2.

pyodide.ffi
Exceptions:
ConversionError An error thrown when conversion between JavaScript
and Python fails.
JsException A wrapper around a JavaScript Error to allow it to be
thrown in Python.
Classes:
JsProxy() A proxy to make a JavaScript object behave like a Python
object
Functions:
create_once_callable(obj, /) Wrap a Python callable in a JavaScript function that can
be called once.
create_proxy(obj, /) Create a JsProxy of a PyProxy.
destroy_proxies(pyproxies, /) Destroy all PyProxies in a JavaScript array.
register_js_module(name, jSproxy) Registers jsproxy as a JavaScript module named name.
to_js(obj, /, *[, depth, pyproxies, ...]) Convert the object to JavaScript.
unregister_js_module(name) Unregisters a JavaScript module with given

name that has been previously registered with
pyodide.registerJsModule or pyodide.ffi.
register_js_module.

exception pyodide. ffi.ConversionError

An error thrown when conversion between JavaScript and Python fails.

60 Chapter 3. Table of contents

Pyodide, Release 0.21.1

exception pyodide.ffi.JsException

A wrapper around a JavaScript Error to allow it to be thrown in Python. See Errors.

property js_error: pyodide.JsProxy

The original JavaScript error

class pyodide.ffi.JsProxy
A proxy to make a JavaScript object behave like a Python object

For more information see the Type translations documentation. In particular, see the list of __dunder__ methods

that are (conditionally) implemented on JsProxy.

assign(rhs: Any,/) — None
Assign from a Python buffer into the JavaScript buffer.

Present only if the wrapped JavaScript object is an ArrayBuffer or an ArrayBuffer view.

assign_to(to: Any,/) — None
Assign to a Python buffer from the JavaScript buffer.

Present only if the wrapped JavaScript object is an ArrayBuffer or an ArrayBuffer view.

catch(onrejected: collections.abc.Callable[[Any], Any],/) — pyodide.Promise

The Promise.catch API, wrapped to manage the lifetimes of the handler.

Present only if the wrapped JavaScript object has a “then” method. Pyodide will automatically release the

references to the handler when the promise resolves.

extend (other: collections.abc.Iterable[Any]) — None

Extend array by appending elements from the iterable.
Present only if the wrapped Javascript object is an array.

finally_(onfinally: collections.abc.Callable[[Any], Any], /) — pyodide.Promise
The Promise. finally API, wrapped to manage the lifetimes of the handler.

Present only if the wrapped JavaScript object has a “then” method. Pyodide will automatically release
the references to the handler when the promise resolves. Note the trailing underscore in the name; this is

needed because finally is a reserved keyword in Python.

from_file(file: io.I0OBase,/) — None
Reads from a file into a buffer.

Will try to read a chunk of data the same size as the buffer from the current position of the file.

Present only if the wrapped Javascript object is an ArrayBuffer or an ArrayBuffer view.

Example

>>> import pytest; pytest.skip(Q)

>>> from js import Uint8Array

>>> # the JsProxy need to be pre-allocated

>>> x = Uint8Array.new(range(10))

>>> with open('file.bin', 'rb') as fh:
x.read_file(fh)

which is equivalent to

>>> x = Uint8Array.new(range(10))

>>> with open('file.bin', 'rb') as fh:

(continues on next page)

3.1. Using Pyodide

Pyodide, Release 0.21.1

(continued from previous page)

chunk = fh.read(size=x.byteLength)

x.assign(chunk)
but the latter copies the data twice whereas the former only copies the
data once.

property js_id: int
An id number which can be used as a dictionary/set key if you want to key on JavaScript object identity.

If two JsProxy are made with the same backing JavaScript object, they will have the same js_id. The reault
is a “pseudorandom” 32 bit integer.

new(*args: Any, **kwargs: Any) — pyodide.JsProxy
Construct a new instance of the JavaScript object

object_entries() — pyodide.JsProxy
The JavaScript APl Object.entries(object)

object_keys() — pyodide.JsProxy
The JavaScript API Object.keys(object)

object_values() — pyodide.JsProxy
The JavaScript API Object.values(object)

then (onfulfilled: collections.abc.Callable[[Any], Any], onrejected: collections.abc.Callable[[Any], Any]) —
pyodide.Promise

The Promise.then API, wrapped to manage the lifetimes of the handlers.

Present only if the wrapped JavaScript object has a “then” method. Pyodide will automatically release the
references to the handlers when the promise resolves.

to_bytes() — bytes
Convert a buffer to a bytes object.

Copies the data once. Present only if the wrapped Javascript object is an ArrayBuffer or an ArrayBuffer
view.

to_file(file: io.IOBase,/) — None
Writes a buffer to a file.

Will write the entire contents of the buffer to the current position of the file.

Present only if the wrapped Javascript object is an ArrayBuffer or an ArrayBuffer view.

Example

>>> import pytest; pytest.skip(Q)

>>> from js import Uint8Array

>>> x = Uint8Array.new(range(10))

>>> with open('file.bin', 'wb') as fh:
x.to_file(fh)

which is equivalent to,

>>> with open('file.bin', 'wb') as fh:
data = x.to_bytes()
fh.write(data)

but the latter copies the data twice whereas the former only copies the

data once.

62

Chapter 3. Table of contents

Pyodide, Release 0.21.1

to_memoryview() — memoryview

Convert a buffer to a memoryview.

Copies the data once. This currently has the same effect as to_py. Present only if the wrapped Javascript
object is an ArrayBuffer or an ArrayBuffer view.

to_py (¥, depth: int = - 1, default_converter: Optional[collections.abc.Callable[[JsProxy,
collections.abc.Callable[[IsProxy], Any], collections.abc.Callable[[JsProxy, Any], None]], Any]] =
None) — Any

Convert the JsProxy to a native Python object as best as possible.

By default, does a deep conversion, if a shallow conversion is desired, you can use proxy.
to_py(depth=1). See JavaScript to Python for more information.

default_converter if present will be invoked whenever Pyodide does not have some built in conversion
for the object. If default_converter raises an error, the error will be allowed to propagate. Otherwise,
the object returned will be used as the conversion. default_converter takes three arguments. The first
argument is the value to be converted.

Here are a couple examples of converter functions. In addition to the normal conversions, convert Date to
datetime:

from datetime import datetime
def default_converter(value, _ignoredl, _ignored2):
if value.constructor.name == "Date":
return datetime. fromtimestamp(d.valueO£()/1000)
return value

Don’t create any JsProxies, require a complete conversion or raise an error:

def default_converter(_value, _ignoredl, _ignored2):
raise Exception("Failed to completely convert object™)

The second and third arguments are only needed for converting containers. The second argument is a
conversion function which is used to convert the elements of the container with the same settings. The
third argument is a “cache” function which is needed to handle self referential containers. Consider the
following example. Suppose we have a Javascript Pair class:

class Pair {
constructor(first, second){
this.first = first;
this.second = second;

We can use the following default_converter to convert Pair to list:

def default_converter(value, convert, cache):

if value.constructor.name != "Pair":
return value

result = []
cache(value, result);
result.append(convert(value.first))
result.append(convert(value.second))
return result

3.1. Using Pyodide 63

Pyodide, Release 0.21.1

Note that we have to cache the conversion of value before converting value. first and value.second.
To see why, consider a self referential pair:

let p = new Pair(0, 0);
p.first = p;

Without cache(value, result);, converting p would lead to an infinite recurse. With it, we can suc-
cessfully convert p to a list such that 1[0] is 1.

to_string(encoding: Optional[str] = None) — str
Convert a buffer to a string object.

Copies the data twice.

The encoding argument will be passed to the Javascript [TextDecoder](https://developer.mozilla.org/
en-US/docs/Web/API/TextDecoder) constructor. It should be one of the encodings listed in the table here:
https://encoding.spec.whatwg.org/#inames-and-labels. The default encoding is utf8.

Present only if the wrapped Javascript object is an ArrayBuffer or an ArrayBuffer view.
property typeof: str
Returns the JavaScript type of the JsProxy.
Corresponds to typeof obj; in JavaScript. You may also be interested in the constuctor attribute which
returns the type as an object.
pyodide. ffi.create_once_callable(obj: collections.abc.Callable[]...], Any], /) — pyodide.JsProxy
Wrap a Python callable in a JavaScript function that can be called once.

After being called the proxy will decrement the reference count of the Callable. The JavaScript function also has
a destroy API that can be used to release the proxy without calling it.

pyodide. ffi.create_proxy(obj: Any,/) — pyodide.JsProxy
Create a JsProxy of a PyProxy.

This allows explicit control over the lifetime of the PyProxy from Python: call the destroy API when done.

pyodide. £fi.destroy_proxies (pyproxies: pyodide.JsProxy, /) — None
Destroy all PyProxies in a JavaScript array.

pyproxies must be a JsProxy of type PyProxy[]. Intended for use with the arrays created from the “pyproxies”
argument of PyProxy.toJs and to_js. This method is necessary because indexing the Array from Python
automatically unwraps the PyProxy into the wrapped Python object.

pyodide. ffi.register_js_module (name: str, jsproxy: Any) — None

Registers jsproxy as a JavaScript module named name. The module can then be imported from Python using
the standard Python import system. If another module by the same name has already been imported, this won’t
have much effect unless you also delete the imported module from sys.modules. This is called by the JavaScript
API pyodide.registerJsModule.

Parameters
* name (str)— Name of js module
* jsproxy (JsProxy) — JavaScript object backing the module

pyodide. ffi.to_js(obj: Any,/, *, depth: int = - 1, pyproxies: Optional[pyodide.JsProxy] = None,
create_pyproxies: bool = True, dict_converter:
Optional[collections.abc.Callable[[collections.abc.Iterable[pyodide.JsProxy],
pyodide.JsProxy]] = None, default_converter: Optional[collections.abc.Callable[[Any,
collections.abc.Callable[[Any], pyodide.JsProxy], collections.abc.Callable[[Any,
pyodide.JsProxy], None]], pyodide.JsProxy]] = None) — pyodide.JsProxy

64 Chapter 3. Table of contents

https://developer.mozilla.org/en-US/docs/Web/API/TextDecoder
https://developer.mozilla.org/en-US/docs/Web/API/TextDecoder

Pyodide, Release 0.21.1

Convert the object to JavaScript.

This is similar to PyProxy. toJs, but for use from Python. If the object can be implicitly translated to JavaScript,
it will be returned unchanged. If the object cannot be converted into JavaScript, this method will return a JsProxy
of a PyProxy, as if you had used pyodide. ffi.create_proxy.

See Python to JavaScript for more information.
Parameters
* obj (Any) — The Python object to convert

* depth (int, default=-1)-The maximum depth to do the conversion. Negative numbers
are treated as infinite. Set this to 1 to do a shallow conversion.

» pyproxies (JsProxy, default = None) — Should be a JavaScript Array. If provided,
any PyProxies generated will be stored here. You can later use destroy_proxies if you
want to destroy the proxies from Python (or from JavaScript you can just iterate over the
Array and destroy the proxies).

* create_pyproxies (bool, default=True)- If you set this to False, to_js will raise an
error

e dict_converter (Callable[[Iterable[JsProxy]], JsProxy], default =
None) — This converter if provided receives a (JavaScript) iterable of (JavaScript) pairs [key,
value]. It is expected to return the desired result of the dict conversion. Some suggested
values for this argument:

js.-Map.new — similar to the default behavior js.Array.from — convert to an array of en-
tries js.Object.fromEntries — convert to a JavaScript object

¢ default_converter (Callable[[Any, Callable[[Any], JsProxy],
Callable[[Any, JsProxy], None]], JsProxy], default=None) — If present
will be invoked whenever Pyodide does not have some built in conversion for the object. If
default_converter raises an error, the error will be allowed to propagate. Otherwise, the
object returned will be used as the conversion. default_converter takes three arguments.
The first argument is the value to be converted.

Here are a couple examples of converter functions. In addition to the normal conversions,
convert Date to datetime:

from datetime import datetime
from js import Date
def default_converter(value, _ignoredl, _ignored2):
if isinstance(value, datetime):
return Date.new(value.timestamp() * 1000)
return value

Don’t create any PyProxies, require a complete conversion or raise an error:

def default_converter(_value, _ignoredl, _ignored2):
raise Exception("Failed to completely convert object™)

The second and third arguments are only needed for converting containers. The second
argument is a conversion function which is used to convert the elements of the container
with the same settings. The third argument is a “cache” function which is needed to handle
self referential containers. Consider the following example. Suppose we have a Python Pair
class:

3.1. Using Pyodide 65

Pyodide, Release 0.21.1

class Pair:
def __init__(self, first,
self.first = first
self.second = second

second) :

We can use the following default_converter to convert Pair to Array:

from js import Array

return value
result = Array.new()
cache(value, result);

return result

def default_converter(value, convert, cache):
if not isinstance(value, Pair):

result.push(convert(value. first))
result.push(convert(value.second))

Note that we have to cache the conversion of value before converting value. first and
value.second. To see why, consider a self referential pair:

p = Pair(0, 0);
p.first = p;

Without cache(value, result);, converting p would lead to an infinite recurse. With it,
we can successfully convert p to an Array such that 1[0] ===

pyodide. ffi.unregister_js_module (name: str) — None

Unregisters a JavaScript module with given name that has been previously registered with pyodide.
registerJsModule or pyodide. ffi.register_js_module. If a JavaScript module with that name does
not already exist, will raise an error. If the module has already been imported, this won’t have much effect
unless you also delete the imported module from sys.modules. This is called by the JavaScript API pyodide.

unregisterJsModule.
Parameters name (str)— Name of js module

Functions:

add_event_1listener(elt, event, listener)

Wrapper for JavaScript's addEventListener() which au-
tomatically manages the lifetime of a JsProxy corre-
sponding to the listener param.

clear_interval(interval_retval)

Wrapper for JavaScript's clearInterval() which automat-
ically manages the lifetime of a JsProxy corresponding
to the callback param.

clear_timeout(timeout_retval)

Wrapper for JavaScript's clearTimeout() which automat-
ically manages the lifetime of a JsProxy corresponding
to the callback param.

remove_event_1listener(elt, event, listener)

Wrapper for JavaScript's removeEventListener() which
automatically manages the lifetime of a JsProxy corre-
sponding to the listener param.

set_interval(callback, interval)

Wrapper for JavaScript's setlnterval() which automati-
cally manages the lifetime of a JsProxy corresponding
to the callback param.

set_timeout(callback, timeout)

Wrapper for JavaScript's setTimeout() which automati-
cally manages the lifetime of a JsProxy corresponding to
the callback param.

66

Chapter 3. Table of contents

Pyodide, Release 0.21.1

pyodide. ffi.wrappers.add_event_listener(elt: pyodide.JsProxy, event: str, listener:
collections.abc.Callable[[Any], None]) — None

Wrapper for JavaScript’s addEventListener() which automatically manages the lifetime of a JsProxy correspond-
ing to the listener param.

pyodide. ffi.wrappers.clear_interval (interval_retval: int | pyodide.JsProxy) — None

Wrapper for JavaScript’s clearInterval() which automatically manages the lifetime of a JsProxy corresponding to
the callback param.

pyodide. ffi.wrappers.clear_timeout (timeout_retval: int | pyodide.JsProxy) — None

Wrapper for JavaScript’s clearTimeout() which automatically manages the lifetime of a JsProxy corresponding
to the callback param.

pyodide. ffi.wrappers.remove_event_listener(elt: pyodide.JsProxy, event: str, listener:
collections.abc.Callable[[Any], None]) — None

Wrapper for JavaScript’s removeEventListener() which automatically manages the lifetime of a JsProxy corre-
sponding to the listener param.

pyodide. ffi.wrappers.set_interval (callback: collections.abc.Callable[[], None], interval: int) — int |
pyodide.JsProxy

Wrapper for JavaScript’s setlnterval() which automatically manages the lifetime of a JsProxy corresponding to
the callback param.

pyodide. ffi.wrappers.set_timeout (callback: collections.abc.Callable[[], None], timeout: int) — int |
pyodide.JsProxy

Wrapper for JavaScript’s setTimeout() which automatically manages the lifetime of a JsProxy corresponding to
the callback param.

pyodide.http

Classes:
FetchResponse(utl, js_response) A wrapper for a Javascript fetch response.
Functions:
open_url(url) Fetches a given URL synchronously.
pyfetch(url, **kwargs) Fetch the url and return the response.

class pyodide.http.FetchResponse (uri: str, js_response: pyodide.JsProxy)

A wrapper for a Javascript fetch response.
See also the Javascript fetch Response api docs.
Parameters
* url — URL to fetch
* js_response — A JsProxy of the fetch response

property body_used: bool

Has the response been used yet?

(If so, attempting to retrieve the body again will raise an OSError.)

3.1. Using Pyodide 67

https://developer.mozilla.org/en-US/docs/Web/API/Response

Pyodide, Release 0.21.1

async buffer() — pyodide.JsProxy

Return the response body as a Javascript ArrayBuffer

async bytes() — bytes
Return the response body as a bytes object

clone() — pyodide.http.FetchResponse
Return an identical copy of the FetchResponse.

This method exists to allow multiple uses of response objects. See Response.clone
async json(**kwargs: Any) — Any

Return the response body as a Javascript JSON object.

Any keyword arguments are passed to json.loads.

async memoryview() — memoryview
Return the response body as a memoryview object
property ok: bool
Was the request successful?
property redirected: bool
Was the request redirected?
property status: str
Response status code
property status_text: str
Response status text
async string() — str
Return the response body as a string
property type: str
The type of the response.
async unpack_archive(*, extract_dir: Optional[str] = None, format: Optional[str] = None) — None
Treat the data as an archive and unpack it into target directory.

Assumes that the file is an archive in a format that shutil has an unpacker for. The arguments extract_dir
and format are passed directly on to shutil.unpack_archive.

Parameters

e extract_dir (str) — Directory to extract the archive into. If not provided, the current
working directory is used.

e format (str) — The archive format: one of “zip”, “tar”, “gztar”, “bztar”. Or any
other format registered with shutil.register_unpack_format(). If not provided,
unpack_archive() will use the archive file name extension and see if an unpacker was
registered for that extension. In case none is found, a ValueError is raised.

property url: str

The url of the response.

It may be different than the url passed to fetch.

68 Chapter 3. Table of contents

https://developer.mozilla.org/en-US/docs/Web/API/Response/clone
https://docs.python.org/3.8/library/json.html#json.loads
https://developer.mozilla.org/en-US/docs/Web/API/Response/type
https://developer.mozilla.org/en-US/docs/Web/API/Response/url

Pyodide, Release 0.21.1

pyodide.http.open_url (url: str) — _io.StringlO
Fetches a given URL synchronously.

The download of binary files is not supported. To download binary files use pyodide.http.pyfetch() which
is asynchronous.

Parameters url (str) - URL to fetch
Returns the contents of the URL.
Return type io.StringlO

async pyodide.http.pyfetch(uri: str, **kwargs: Any) — pyodide.http.FetchResponse
Fetch the url and return the response.

This functions provides a similar API to the JavaScript fetch function however it is designed to be convenient to
use from Python. The pyodide.http.FetchResponse has methods with the output types already converted
to Python objects.

Parameters
e url (str) — URL to fetch.

» **kwargs (Any) — keyword arguments are passed along as optional parameters to the fetch

APL
pyodide.webloop
Classes:
WebLoop() A custom event loop for use in Pyodide.
WebLoopPolicy() A simple event loop policy for managing WebLoop

based event loops.

class pyodide.webloop.WebLoop

A custom event loop for use in Pyodide.
Schedules tasks on the browser event loop. Does no lifecycle management and runs forever.

run_forever and run_until_complete cannot block like a normal event loop would because we only have
one thread so blocking would stall the browser event loop and prevent anything from ever happening.

We defer all work to the browser event loop using the setTimeout function. To ensure that this event loop doesn’t
stall out UI and other browser handling, we want to make sure that each task is scheduled on the browser event
loop as a task not as a microtask. setTimeout(callback, 0) enqueues the callback as a task so it works well
for our purposes.

See Event Loop Methods.
class pyodide.webloop.WebLoopPolicy

A simple event loop policy for managing WebLoop based event loops.

3.1. Using Pyodide 69

https://developer.mozilla.org/en-US/docs/Web/API/fetch
https://developer.mozilla.org/en-US/docs/Web/API/fetch#parameters
https://developer.mozilla.org/en-US/docs/Web/API/fetch#parameters
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio-event-loop

Pyodide, Release 0.21.1

Micropip API

micropip.freeze() — str

Produce a json string which can be used as the contents of the repodata. json lock file.

If you later load Pyodide with this lock file, you can use pyodide.loadPackage to load packages that were
loaded with micropip this time. Loading packages with pyodide. IloadPackage is much faster and you will
always get consistent versions of all your dependencies.

You can use your custom lock file by passing an appropriate url to the lockFileURL argument to loadPyodide.

async micropip.install (requirements: str | list[str], keep_going: bool = False, deps: bool = True, credentials:

Optional[str] = None, pre: bool = False) — None

Install the given package and all of its dependencies.
See loading packages for more information.

If a package is not found in the Pyodide repository it will be loaded from PyPI. Micropip can only load pure
Python packages or for packages with C extensions that are built for Pyodide.

When used in web browsers, downloads from PyPI will be cached. When run in Node.js, packages are currently
not cached, and will be re-downloaded each time micropip.install is run.

Parameters requirements (str | List[str])— A requirement or list of requirements to install.
Each requirement is a string, which should be either a package name or a wheel URI:

¢ If the requirement does not end in .whl, it will be interpreted as a package name. A package
with this name must either be present in the Pyodide lock file or on PyPI.

* If the requirement ends in .whl, it is a wheel URI. The part of the requirement after the last
/ must be a valid wheel name in compliance with the PEP 427 naming convention.

e If a wheel URI starts with emfs:, it will be interpreted as a path in the Em-
scripten file system (Pyodide’s file system). E.g., emfs:../relative/path/wheel. whl or
emfs:/absolute/path/wheel.whl. In this case, only .whl files are supported.

o If a wheel URI requirement starts with http: or https: it will be interpreted as a URL.

* In node, you can access the native file system using a URI that starts with file:. In the
browser this will not work.

keep_going : bool, default: False

This parameter decides the behavior of the micropip when it encounters a Python package without a
pure Python wheel while doing dependency resolution:

 If False, an error will be raised on first package with a missing wheel.
e If True, the micropip will keep going after the first error, and report a list of errors at the end.
deps : bool, default: True

If True, install dependencies specified in METADATA file for each package. Otherwise do not install
dependencies.

credentials : Optional [str]

This parameter specifies the value of credentials when calling the fetch() function which is used
to download the package.

When not specified, fetch() is called without credentials.

pre : bool, default: False

70

Chapter 3. Table of contents

https://www.python.org/dev/peps/pep-0427/#file-format
https://developer.mozilla.org/en-US/docs/Web/API/fetch

Pyodide, Release 0.21.1

If True, include pre-release and development versions. By default, micropip only finds stable ver-
sions.
Returns A Future that resolves to None when all packages have been downloaded and installed.
Return type Future
micropip.list()
Get the dictionary of installed packages.
Returns

packages — A dictionary of installed packages.

>>> import micropip

>>> await micropip.install('regex')
>>> package_list = micropip.list()
>>> print(package_list)

Name | Version | Source
_________________ | e | e
regex | 2021.7.6 | pyodide
>>> "regex" in package_list

True

Return type micropip.package.PackageDict

class package.PackageDict (dict=None, /, **kwargs)

A dictionary that holds list of metadata on packages. This class is used in micropip to keep the list of installed
packages.

pyodide-build CLI

A command line interface (CLI) for pyodide_build

pyodide-build [-h] {serve,mkpkg,create_xbuildenv,install_xbuildenv} ...

pyodide-build options

e -h, --help - show this help message and exit

pyodide serve

Start a server with the supplied dist-dir and port.

pyodide serve [-h] [--dist-dir DIST_DIR] [--port PORT]

3.1. Using Pyodide 71

Pyodide, Release 0.21.1

pyodide serve options

e -h, --help - show this help message and exit
¢ --dist-dir DIST_DIR - set the dist directory (default: %o(default)s) (default: dist)
e —-port PORT - set the PORT number (default: %o(default)s) (default: 8000)

pyodide mkpkg

Make a new pyodide package. Creates a simple template that will work for most pure Python packages, but will have
to be edited for more complex things.

pyodide mkpkg [-h] [--update] [--update-if-not-patched] [--source-format SOURCE_FORMAT]
[--version VERSION]
package

pyodide mkpkg positional arguments

» package - The package name on PyPI (default: None)

pyodide mkpkg options

e -h, --help - show this help message and exit
* —-update - Update existing package (default: False)
e --update-if-not-patched - Update existing package if it has no patches (default: False)

e --source-format SOURCE_FORMAT - Which source format is preferred. Options are wheel or sdist. If none is
provided, then either a wheel or an sdist will be used. When updating a package, the type will be kept the same
if possible. (default: None)

e --version VERSION - Package version string, e.g. v1.2.1 (defaults to latest stable release)

pyodide create_xbuildenv

Create xbuild env.

Note: this is a private endpoint that should not be used outside of the Pyodide Makefile.

pyodide create_xbuildenv [-h]

72 Chapter 3. Table of contents

Pyodide, Release 0.21.1

pyodide create_xbuildenv options

e -h, --help - show this help message and exit

pyodide install_xbuildenv

Install xbuild env.

The installed environment is the same as the one that would result from "PYODIDE_PACKAGES="scipy’ make" except
that it is much faster. The goal is to enable out-of-tree builds for binary packages that depend on numpy or scipy. Note:
this is a private endpoint that should not be used outside of the Pyodide Makefile.

pyodide install_xbuildenv [-h] [--download] xbuild_env

pyodide install_xbuildenv positional arguments

e xbuild_env (default: None)

pyodide install_xbuildenv options

e -h, --help - show this help message and exit
¢ —-download - Download xbuild env (default: False)
3.1.9 Frequently Asked Questions

How can | load external files in Pyodide?

If you are using Pyodide in the browser, you should download external files and save them to the virtual file system. The
recommended way to do this is to zip the files and unpack them into the file system with pyodide. unpackArchive:

let zipResponse = await fetch("myfiles.zip");
let zipBinary = await zipResponse.arrayBuffer();
pyodide.unpackArchive(zipBinary, "zip");

You can also download the files from Python using pyodide.http.pyfetch, which is a convenient wrapper of
JavaScript fetch:

await pyodide.runPythonAsync(
from pyodide.http import pyfetch
response = await pyfetch("https://some_url/myfiles.zip")
await response.unpack_archive()

)

If you are working in Node.js, you can mount a native folder into the file system as follows:

FS.mkdir("/local_directory");
FS.mount (NODEFS, { root: "some/local/filepath" }, "/local_directory');

3.1. Using Pyodide 73

Pyodide, Release 0.21.1

Then you can access the mounted folder from Python via the /local_directory mount.

Why can’t I just use urllib or requests?

We currently can’t use such packages since sockets are not available in Pyodide. See Write http.client in terms of Web
APIs for more information.

Why can’t | load files from the local file system?

For security reasons JavaScript in the browser is not allowed to load local data files (for example, file:///path/to/
local/file.data). You will run into Network Errors, due to the Same Origin Policy. There is a File System API
supported in Chrome but not in Firefox or Safari.

For development purposes, you can serve your files with a web server.
How can | execute code in a custom hamespace?

The second argument to pyodide. runPython is an options object which may include a globals element which is a
namespace for code to read from and write to. The provided namespace must be a Python dictionary.

let my_namespace = pyodide.globals.get("dict")();
pyodide.runPython('x = 1 + 1°, { globals: my_namespace });
pyodide.runPython('y = x ** x°, { globals: my_namespace });
my_namespace.get("y"); // =>4

You can also use this approach to inject variables from JavaScript into the Python namespace, for example:

let my_namespace = pyodide.toPy({ x: 2, y: [1, 2, 3] });
pyodide . runPython(

assert x == y[1]
7 = X * % X

{ globals: my_namespace }

);
my_namespace.get("z"); // ==> 4

How to detect that code is run with Pyodide?

At run time, you can check if Python is built with Emscripten (which is the case for Pyodide) with,

import sys

if sys.platform == 'emscripten':
running in Pyodide or other Emscripten based build

To detect that a code is running with Pyodide specifically, you can check for the loaded pyodide module,

import sys

(continues on next page)

74 Chapter 3. Table of contents

https://en.wikipedia.org/wiki/Same-origin_policy
https://wicg.github.io/file-system-access/
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/set_up_a_local_testing_server

Pyodide, Release 0.21.1

(continued from previous page)

if "pyodide" in sys.modules:
running in Pyodide

This however will not work at build time (i.e. in a setup.py) due to the way the Pyodide build system works. It first
compiles packages with the host compiler (e.g. gcc) and then re-runs the compilation commands with emsdk. So the
setup.py is never run inside the Pyodide environment.

To detect Pyodide, at build time use,

import os

if "PYODIDE" in os.environ:
building for Pyodide

We used to use the environment variable PYODIDE_BASE_URL for this purpose, but this usage is deprecated.

How do | create custom Python packages from JavaScript?

Put a collection of functions into a JavaScript object and use pyodide.registerJsModule: JavaScript:

let my_module = {
f: function (x) {
return x * x + 1;
1,
g: function (x) {
console.log(Calling g on argument ${x});
return x;
1,
submodule: {
h: function (x) {
return x * x - 1;
3
c: 2,
1,
};
pyodide.registerJsModule("my_js_module", my_module);

You can import your package like a normal Python package:

import my_js_module
from my_js_module.submodule import h, c

assert my_js_module.f(7) == 50
assert h(9) == 80
assert c ==

3.1. Using Pyodide 75

Pyodide, Release 0.21.1

How can | send a Python object from my server to Pyodide?

The best way to do this is with pickle. If the version of Python used in the server exactly matches the version of Python
used in the client, then objects that can be successfully pickled can be sent to the client and unpickled in Pyodide. If
the versions of Python are different then for instance sending AST is unlikely to work since there are breaking changes
to Python AST in most Python minor versions.

Similarly when pickling Python objects defined in a Python package, the package version needs to match exactly be-
tween the server and pyodide.

Generally, pickles are portable between architectures (here amd64 and wasm32). The rare cases when they are not
portable, for instance currently tree based models in scikit-learn, can be considered as a bug in the upstream library.

Security Issues with pickle

Unpickling data is similar to eval. On any public-facing server it is a really bad idea to unpickle any data sent from
the client. For sending data from client to server, try some other serialization format like JSON.

How can | use a Python function as an event handler?

Note that the most straight forward way of doing this will not work:

from js import document
def f(*args):
document.querySelector("h1").innerHTML += "(>.<)"

document .body.addEventListener('click', £)

Now every time you click, an error will be raised (see Calling JavaScript functions from Python).

To do this correctly use pyodide.create_proxy() as follows:

from js import document
from pyodide import create_proxy
def f(*args):
document.querySelector("hl1").innerHTML += "(>.<)"

proxy_f = create_proxy(f)

document .body.addEventListener('click', proxy_f)

Store proxy_f in Python then later:

document .body.removeEventListener('click', proxy_f£f)
proxy_f.destroy()

How can | use fetch with optional arguments from Python?

The most obvious translation of the JavaScript code won’t work:

import json

resp = await js.fetch('/someurl', {
"method": "POST",
"body": json.dumps({ "some" : "json" }),
"credentials": "same-origin",

(continues on next page)

76 Chapter 3. Table of contents

Pyodide, Release 0.21.1

(continued from previous page)

"headers": { "Content-Type": "application/json" }
b

The fetch API ignores the options that we attempted to provide. You can do this correctly in one of two ways:

import json

from pyodide.ffi import to_js

from js import Object

resp = await js.fetch('example.com/some_api',
method= "POST",
body= json.dumps({ "some" : "json" }),
credentials= "same-origin",

headers= Object. fromEntries(to_js({ "Content-Type": "application/json" })),

or:

import json
from pyodide.ffi import to_js
from js import Object
resp = await js.fetch('example.com/some_api', to_js({
"method": "POST",
"body": json.dumps({ "some" : "json" }),
"credentials": "same-origin",
"headers": { "Content-Type": "application/json" }
}, dict_converter=Object.fromEntries)

How can | control the behavior of stdin / stdout / stderr?

If you wish to override stdin, stdout or stderr for the entire Pyodide runtime, you can pass options to IoadPyodide:
If you say

loadPyodide ({
stdin: stdin_func, stdout: stdout_func, stderr: stderr_func

b

then every time a line is written to stdout (resp. stderr), stdout_func (resp stderr_func) will be called on the
line. Every time stdin is read, stdin_func will be called with zero arguments. It is expected to return a string which
is interpreted as a line of text.

Temporary redirection works much the same as it does in native Python: you can overwrite sys.stdin, sys.
stdout, and sys.stderr respectively. If you want to do it temporarily, it’s recommended to use contextlib.
redirect_stdout and contextlib.redirect_stderr. Thereis no contextlib.redirect_stdin butitis easy
to make your own as follows:

from contextlib import _RedirectStream
class redirect_stdin(_RedirectStream):
_stream = "stdin"

For example, if you do:

3.1. Using Pyodide 77

https://docs.python.org/3/library/contextlib.html#contextlib.redirect_stdout
https://docs.python.org/3/library/contextlib.html#contextlib.redirect_stdout
https://docs.python.org/3/library/contextlib.html#contextlib.redirect_stderr

Pyodide, Release 0.21.1

from io import StringIO

with redirect_stdin(StringIO("\n".join(["eval"”, "asyncio.ensure_future", "functools.
—reduce", "quit"]))):
help(Q)

it will print:

Welcome to Python 3.10's help utility!
<...OMITTED LINES>
Help on built-in function eval in module builtins:
eval (source, globals=None, locals=None, /)
Evaluate the given source in the context of globals and locals.
<...OMITTED LINES>
Help on function ensure_future in asyncio:
asyncio.ensure_future = ensure_future(coro_or_future, *, loop=None)
Wrap a coroutine or an awaitable in a future.
<...OMITTED LINES>
Help on built-in function reduce in functools:
functools.reduce = reduce(...)
reduce(function, sequence[, initial]) -> value
Apply a function of two arguments cumulatively to the items of a sequence,
<...OMITTED LINES>
You are now leaving help and returning to the Python interpreter.

Micropip can’t find a pure Python wheel

When installing a Python package from PyPI, micropip will produce an error if it cannot find a pure Python
wheel. To determine if a package has a pure Python wheel manually, you can open its PyPi page (for instance
https://pypi.org/project/snowballstemmer/) and go to the “Download files” tab. If this tab doesn’t contain a file
*py3-none-any.whl then the pure Python wheel is missing.

This can happen for two reasons,

1. either the package is pure Python (you can check language composition for a package on Github), and its main-
tainers didn’t upload a wheel. In this case, you can report this issue to the package issue tracker. As a temporary
solution, you can also build the wheel yourself, upload it to some temporary location and install it with micropip
from the corresponding URL.

2. or the package has binary extensions (e.g. C, Fortran or Rust), in which case it needs to be packaged in Pyodide.
Please open an issue after checking than an issue for this opackage doesn’t exist already. Then follow Creating
a Pyodide package.

How can | change the behavior of runPython and runPythonAsync?

You can directly call Python functions from JavaScript. For most purposes it makes sense to make your own
Python function as an entrypoint and call that instead of redefining runPython. The definitions of runPython and
runPythonAsync are very simple:

function runPython(code) {
pyodide.pyodide_py.code.eval_code(code, pyodide.globals);

}

78 Chapter 3. Table of contents

https://packaging.python.org/en/latest/tutorials/packaging-projects/#generating-distribution-archives
https://github.com/pyodide/pyodide/issues

Pyodide, Release 0.21.1

async function runPythonAsync(code) {
return await pyodide.pyodide_py.code.eval_code_async(code, pyodide.globals);
}

To make your own version of runPython you could do:

const my_eval_code = pyodide.runPython("
from pyodide.code import eval_code
def my_eval_code(code, ns):
extra_info = None
result = eval_code(code, ns)
return ns["extra_info"], result
my_eval_code

)

function myRunPython(code){
return my_eval_code(code, pyodide.globals);

}

Then myRunPython("2+7") returns [None, 9] and myRunPython("extra_info='hello' ; 2 + 2") returns
['hello', 4]. If you want to change which packages pyodide. loadPackagesFromImports loads, you can mon-
key patch pyodide. code. find_imports which takes code as an argument and returns a list of packages imported.

3.2 Development

The Development section helps Pyodide contributors to find information about the development process including
making packages to support third party libraries.

3.2.1 Building from sources

Warning: If you are building the latest development version of Pyodide from the main branch, please make sure
to follow the build instructions from the dev version of the documentation at pyodide.org/en/latest/

Building Pyodide is easiest using the Pyodide Docker image. This approach works with any native operating system as
long as Docker is installed. You can also build on your native Linux OS if the correct build prerequisites are installed.
Building on MacOS is possible, but there are known issues as of version 0.18 that you will need to work around. It is
not possible to build on Windows, but you can use Windows Subsystem for Linux to create a Linux build environment.

Build instructions

Using Docker

We provide a Debian-based Docker image (pyodide/pyodide-env) on Docker Hub with the dependencies already
installed to make it easier to build Pyodide. On top of that we provide a pre-built image (pyodide/pyodide) which
can be used for fast custom and partial builds. Note that building from the non pre-built Docker image is very slow on
Mac, building on the host machine is preferred if at all possible.

3.2. Development 79

https://pyodide.org/en/latest/development/building-from-sources.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://hub.docker.com/r/pyodide/pyodide-env
https://hub.docker.com/r/pyodide/pyodide

Pyodide, Release 0.21.1

Note: These Docker images are also available from the Github packages at github.com/orgs/pyodide/packages.

1. Install Docker
2. From a git checkout of Pyodide, run . /run_docker or . /run_docker --pre-built

3. Run make to build.

Note: You can control the resources allocated to the build by setting the env vars EMSDK_NUM_CORE, EMCC_CORES
and PYODIDE_JOBS (the default for each is 4).

If running make deterministically stops at some point, increasing the maximum RAM usage available to the docker
container might help. (The RAM available to the container is different from the physical RAM capacity of the machine.)
Ideally, at least 3 GB of RAM should be available to the docker container to build Pyodide smoothly. These settings
can be changed via Docker preferences (see here).

You can edit the files in the shared pyodide source folder on your host machine (outside of Docker), and then repeatedly
run make inside the Docker environment to test your changes.

Using make
Make sure the prerequisites for emsdk are installed. Pyodide will build a custom, patched version of emsdk, so there is
no need to build it yourself prior.

You need Python 3.10.2 to run the build scripts. To make sure that the correct Python is used during the build it is
recommended to use a virtual environment,

Linux

Additional build prerequisites are:
* A working native compiler toolchain, enough to build CPython.
* CMake
* FreeType 2 development libraries to compile Matplotlib.
» gfortran (GNU Fortran 95 compiler)
e f2c
* ccache (optional) highly recommended for much faster rebuilds.
* (optional) SWIG to compile NLopt

* (optional) sqlite3 to compile libproj

80 Chapter 3. Table of contents

https://github.com/orgs/pyodide/packages
https://stackoverflow.com/questions/44533319/how-to-assign-more-memory-to-docker-container
https://github.com/emscripten-core/emsdk
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/#creating-a-virtual-environment
https://devguide.python.org/setup/#linux
http://www.netlib.org/f2c/
https://ccache.samba.org

Pyodide, Release 0.21.1

MacOS

To build on MacOS, you need:
e Homebrew for installing dependencies

e System libraries in the root directory (sudo installer -pkg /Library/Developer/
CommandLineTools/Packages/macOS_SDK_headers_for_macOS_10.14.pkg -target / should do
it, see https://github.com/pyenv/pyenv/issues/1219#issuecomment-428305417)

e coreutils for md5sum and other essential Unix utilities (brew install coreutils).
¢ cmake (brew install cmake)

* pkg-config (brew install pkg-config)

» openssl (brew install openssl)

¢ autoconf, automaker & libtool (brew install autoconf automaker libtool)
o gfortran (brew cask install gfortran)

e f2c: Install wget (brew install wget), and then run the buildf2c script from the root directory (sudo ./
tools/buildf2c)

e It is also recommended installing the GNU patch (brew install gpatch), and GNU sed (brew install
gnu-sed) and re-defining them temporarily as patch and sed.

* (optional) SWIG to compile NLopt (brew install swig)

* (optional) sqlite3 to compile libproj (brew install sqlite3)

Note: If you encounter issues with the requirements, it is useful to check the exact list in the Dockerfile which is tested
in the CIL.

You can install the Python dependencies from the requirement file at the root of Pyodide folder: pip install -r
requirements.txt

After installing the build prerequisites, run from the command line:

make

Partial builds

To build a subset of available packages in Pyodide, set the environment variable PYODIDE_PACKAGES to a comma
separated list of packages. For instance,

PYODIDE_PACKAGES="toolz,attrs" make

Dependencies of the listed packages will be built automatically as well. The package names must match the folder
names in packages/ exactly; in particular they are case-sensitive.

If PYODIDE_PACKAGES is not set, a minimal set of packages necessary to run the core test suite is in-

stalled, including “micropip”, “pyparsing”, “pytz”, “packaging”, “Jinja2”, “regex”. This is equivalent to setting
PYODIDE_PACKAGES='core' meta-package. Other supported meta-packages are,

* “min-scipy-stack”: includes the “core” meta-package as well as some core packages from the scientific python
stack and their dependencies: “numpy”, “scipy”, “pandas”, “matplotlib”, “scikit-learn”, “joblib”, “pytest”. This
option is non exhaustive and is mainly intended to make build faster while testing a diverse set of scientific

packages.

3.2. Development 81

https://brew.sh/
https://formulae.brew.sh/formula/gnu-sed
https://github.com/pyodide/pyodide/blob/main/Dockerfile

Pyodide, Release 0.21.1

e “*” builds all packages
* You can exclude a package by prefixing it with “!”.
micropip and distutils are always automatically included.

The cryptography package is a Rust extension. If you want to build it, you will need Rust >= 1.41, you need the
CARGO_HOME environment variable set appropriately, and you need the wasm32-unknown-emscripten toolchain
installed. If you run make rust, Pyodide will install this stuff automatically. If you want to build every package except
for cryptography, you can set PYODIDE_PACKAGES="%*, | cryptography".

Environment variables

The following environment variables additionally impact the build:

* PYODIDE_JOBS: the -j option passed to the emmake make command when applicable for parallel compilation.
Default: 3.

* PYODIDE_BASE_URL: Base URL where Pyodide packages are deployed. It must end with a trailing /. Default:
./ toload Pyodide packages from the same base URL path as where pyodide. jsislocated. Example: https:/
/cdn. jsdelivr.net/pyodide/v0.21.1/full/

* EXTRA_CFLAGS : Add extra compilation flags.
e EXTRA_LDFLAGS : Add extra linker flags.

Setting EXTRA_CFLAGS="-D DEBUG_F" provides detailed diagnostic information whenever error branches are taken
inside the Pyodide core code. These error messages are frequently helpful even when the problem is a fatal configuration
problem and Pyodide cannot even be initialized. These error branches occur also in correctly working code, but they
are relatively uncommon so in practice the amount of noise generated isn’t too large. The shorthand make debug
automatically sets this flag.

In certain cases, setting EXTRA_LDFLAGS="-s ASSERTIONS=1 or ASSERTIONS=2 can also be helpful, but this slows
down the linking and the runtime speed of Pyodide a lot and generates a large amount of noise in the console.

3.2.2 Creating a Pyodide package

It is recommended to look into how other similar packages are built in Pyodide. If you encounter difficulties in building
your package after trying the steps listed here, open a new Pyodide issue.

Determining if creating a Pyodide package is necessary
If you wish to use a package in Pyodide that is not already included in the packages folder, first you need to determine
whether it is necessary to package it for Pyodide. Ideally, you should start this process with package dependencies.

Most pure Python packages can be installed directly from PyPI with micropip.install() if they have a pure Python
wheel. Check if this is the case by trying micropip.install ("package-name").

If there is no wheel on PyPI, but you believe there is nothing preventing it (it is a Python package without C extensions):

* you can create the wheel yourself by running

python -m pip install build
python -m build

from within the package folder where the setup.py are located. See the Python packaging guide for more
details. Then upload the wheel file somewhere (not to PyPI) and install it with micropip via its URL.

82 Chapter 3. Table of contents

https://doc.rust-lang.org/cargo/reference/environment-variables.html#environment-variables-cargo-reads
https://github.com/pyodide/pyodide/issues
https://github.com/pyodide/pyodide/tree/main/packages
https://packaging.python.org/tutorials/packaging-projects/#generating-distribution-archives

Pyodide, Release 0.21.1

* please open an issue in the package repository asking the authors to upload the wheel.

If however the package has C extensions or its code requires patching, then continue to the next steps.

Note: To determine if a package has C extensions, check if its setup.py contains any compilation commands.

Building Python wheels (out of tree)

Warning: This feature is still experimental in Pyodide 0.21.0.

It is now possible to build Python wheels for WASM/Emscripten separately from the Pyodide package tree using the
following steps,

1. Install pyodide-build,

pip install pyodide-build

2. Build the WASM/Emscripten package wheel by running,

pyodide build

in the package folder (where the setup.py or pyproject.toml file is located). This command would produce
a binary wheel in the dist/ folder, similarly to the PyPa build command.

3. Make the resulting file accessible as part of your web applications, and install it with micropip.install by
URL.

Below is a more complete example for building a Python wheel out of tree with Github Actions CI,

runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: actions/setup-python@v4
with:
python-version: 3.10.2
- uses: mymindstorm/setup-emsdk@vll
with:
version: 3.1.14
- run: pip install pyodide-build==0.21.0
- run: pyodide build

Notes

* the resulting package wheels have a file name of the form *-cp310-cp310-emscripten_3_1_14_wasm32.
whl and are compatible only for a given Python and Emscripten versions. In the Pyodide distribution, Python
and Emscripten are updated simultaneously.

* PyPi for now does not support wasm32 wheels so you will not be able to upload them there.

3.2. Development 83

https://pypa-build.readthedocs.io/en/latest/

Pyodide, Release 0.21.1

Building a Python package (in tree)

This section documents how to add a new package to the Pyodide distribution.

1. Creating the meta.yaml file

To build a Python package, you need to create a meta.yaml file that defines a “recipe” which may include build
commands and “patches” (source code edits), amongst other things.

If your package is on PyPI, the easiest place to start is with the mkpkg fool.

First clone and build the Pyodide git repo like this:

git clone https://github.com/pyodide/pyodide
cd pyodide

If you’d like to use a Docker container, you can now run this command:

./run_docker --pre-built

This will mount the current working directory as /src within the container.

Now run make to build the relevant Pyodide tools:

make

Now install pyodide_build with:

pip install ./pyodide-build

And now you can run mkpkg:

python -m pyodide_build mkpkg <package-name>

This will generate a meta.yaml file under packages/<package-name>/ (see The meta.yaml specification) that
should work out of the box for many simple Python packages. This tool will populate the latest version, download
link and sha256 hash by querying PyPI. It doesn’t currently handle package dependencies, so you will need to specify
those yourself.

You can also use the meta.yaml of other Pyodide packages in the packages/ folder as a starting point.

Note: To reliably determine build and runtime dependencies, including for non Python libraries, it is often useful
to verify if the package was already built on conda-forge and open the corresponding meta.yaml file. This can be
done either by checking if the URL https://github.com/conda-forge/<package-name>-feedstock/blob/
master/recipe/meta.yaml exists, or by searching the conda-forge GitHub org for the package name.

The Pyodide meta.yaml file format was inspired by the one in conda, however it is not strictly compatible.

The package may have special build requirements - e.g. specified in its Github README. If so, you can add extra
build commands to the meta.yaml like this:

build:
script: |

84 Chapter 3. Table of contents

https://github.com/pyodide/pyodide/tree/main/packages
https://conda-forge.org/
https://github.com/conda-forge/

Pyodide, Release 0.21.1

2. Building the package and investigating issues

Once the meta.yaml file is ready, build the package with the following command

python -m pyodide_build buildall --only 'package-name' packages dist

and see if there are any errors.
If there are errors you might need to
* patch the package by adding .patch files to packages/<package-name>/patches
* add the patch files to the source/patches field in the meta.yaml file
then restart the build.
If the build succeeds you can try to load the package by
1. Serve the dist directory with python -m http.server
2. Open localhost:<port>/console.html and try to import the package

3. You can test the package in the repl

Writing tests for your package

The tests should go in one or more files like packages/<package-name>/test_xxx.py. Most packages have one

test file named test_<package-name>.py. The tests should look like:

from pytest_pyodide import run_in_pyodide

@run_in_pyodide(packages=["<package-name>"])
def test_mytestname(selenium):

import <package-name>

assert package.do_something() == 5

If you want to run your package’s full pytest test suite and your package vendors tests you can do it like:

from pytest_pyodide import run_in_pyodide

@run_in_pyodide(packages=["<package-name>-tests", "pytest"])
def test_mytestname(selenium):
import pytest
pytest.main(["--pyargs", "<package-name>", "-k", "some_filter", ...])

you can put whatever command line arguments you would pass to pytest as separate entries in the list. For more info

on run_in_pyodide see pytest-pyodide.

3.2. Development

85

https://github.com/pyodide/pytest-pyodide

Pyodide, Release 0.21.1

Generating patches

If the package has a git repository, the easiest way to make a patch is usually:

1.

Clone the git repository of the package. You might want to use the options git clone --depth 1 --branch
<version>. Find the appropriate tag given the version of the package you are trying to modify.

Make a new branch with git checkout -b pyodide-version (e.g., pyodide-1.21.4).

Make whatever changes you want. Commit them. Please split your changes up into focused commits. Write
detailed commit messages! People will read them in the future, particularly when migrating patches or trying
to decide if they are no longer needed. The first line of each commit message will also be used in the patch file
name.

Use git format-patch <version> -o <pyodide-root>/packages/<package-name>/patches/ to
generate a patch file for your changes and store it directly into the patches folder.

Migrating Patches

When you want to upgrade the version of a package, you will need to migrate the patches. To do this:

1.

A

Clone the git repository of the package. You might want to use the options git clone --depth 1 --branch
<version-tag>.

Make a new branch with git checkout -b pyodide-old-version (e.g., pyodide-1.21.4).
Apply the current patches with git am <pyodide-root>/packages/<package-name>/patches/*.
Make a new branch git checkout -b pyodide-new-version (e.g., pyodide-1.22.0)

Rebase the patches with git rebase old-version --onto new-version(e.g.,git rebase pyodide-1.
21.4 --onto pyodide-1.22.0). Resolve any rebase conflicts. If a patch has been upstreamed, you can drop
it with git rebase --skip.

Remove old patches with rm <pyodide-root>/packages/<package-name>/patches/*.

Use git format-patch <version-tag> -o <pyodide-root>/packages/<package-name>/patches/
to generate new patch files.

Upstream your patches!

Please create PRs or issues to discuss with the package maintainers to try to find ways to include your patches into the
package. Many package maintainers are very receptive to including Pyodide-related patches and they reduce future
maintenance work for us.

The package build pipeline

Pyodide includes a toolchain to add new third-party Python libraries to the build. We automate the following steps:

e If source is a url (not in-tree):

— Download a source archive or a pure python wheel (usually from PyPI)
— Confirm integrity of the package by comparing it to a checksum
— If building from source (not from a wheel):

Apply patches, if any, to the source distribution

86

Chapter 3. Table of contents

Pyodide, Release 0.21.1

% Add extra files, if any, to the source distribution
* If the source is not a wheel (building from a source archive or an in-tree source):
— Run build/script if present

— Modify the PATH to point to wrappers for gfortran, gcc, g++, ar, and 1d that preempt compiler calls,
rewrite the arguments, and pass them to the appropriate emscripten compiler tools.

— Using pypa/build:

% Create an isolated build environment. Install symbolic links from this isolated environment to “host”
copies of certain unisolated packages.

Install the build dependencies requested in the package build-requires. (We ignore all version
constraints on the unisolated packages, but version constraints on other packages are respected.

* Run the PEP 517 build backend associated to the project to generate a wheel.
* Unpack the wheel with python -m wheel unpack.
* Run the build/post script in the unpacked wheel directory if it’s present.
* Unvendor unit tests included in the installation folder to a separate zip file <package name>-tests.zip
* Repack the wheel with python -m wheel pack

Lastly, a repodata. json file is created containing the dependency tree of all packages, so pyodide.loadPackage
can load a package’s dependencies automatically.

Partial Rebuilds

By default, each time you run buildpkg, pyodide-build will delete the entire source directory and replace it with
a fresh copy from the download url. This is to ensure build repeatability. For debugging purposes, this is likely to be
undesirable. If you want to try out a modified source tree, you can pass the flag --continue and buildpkg will try
to build from the existing source tree. This can cause various issues, but if it works it is much more convenient.

Using the --continue flag, you can modify the sources in tree to fix the build, then when it works, copy the modified
sources into your checked out copy of the package source repository and use git format-patch to generate the patch.

C library dependencies

Some Python packages depend on certain C libraries, e.g. 1xml depends on 1ibxml.

To package a C library, create a directory in packages/ for the C library. In the directory, you should write meta.yaml
that specifies metadata about the library. See The meta.yaml specification for more details.

The minimal example of meta.yaml for a C library is:

package:
name: <name>
version: <version>

source:
url: <url>
sha256: <sha256>

requirements:
run:

(continues on next page)

3.2. Development 87

Pyodide, Release 0.21.1

(continued from previous page)

- <requirement>
build:
library: true
script: |

You can use the meta.yaml of other C libraries such as libxml as a starting point.

After packaging a C library, it can be added as a dependency of a Python package like a normal dependency. See 1xml
and 1ibxml for an example (and also scipy and CLAPACK).

Remark: Certain C libraries come as emscripten ports, and do not have to be built manually. They can be used by
adding e.g. -s USE_ZLIB in the cflags of the Python package. See e.g. matplotlib for an example. The full list
of libraries with Emscripten ports is here.

Structure of a Pyodide package

Pyodide is obtained by compiling CPython into WebAssembly. As such, it loads packages the same way as CPython
— it looks for relevant files .py and . so files in the directories in sys.path. When installing a package, our job is to
install our .py and . so files in the right location in emscripten’s virtual filesystem.

Wheels are just zip archives, and to install them we unzip them into the site-packages directory. If there are any
.so files, we also need to load them at install time: WebAssembly must be loaded asynchronously, but Python imports
are synchronous so it is impossible to load . so files lazily.

The meta.yaml specification

Packages are defined by writing a meta.yaml file. The format of these files is based on the meta.yaml files used to
build Conda packages, though it is much more limited. The most important limitation is that Pyodide assumes there
will only be one version of a given library available, whereas Conda allows the user to specify the versions of each
package that they want to install. Despite the limitations, it is recommended to use existing conda package definitions
as a starting point to create Pyodide packages. In general, however, one should not expect Conda packages to “just
work” with Pyodide, see #795

This is unstable

The Pyodide build system is under fairly active development (as of 2022/03/13). The next couple of releases are likely
to include breaking changes.

The supported keys in the meta.yaml file are described below.

88 Chapter 3. Table of contents

https://github.com/pyodide/pyodide/blob/main/packages/libxml/meta.yaml
https://github.com/orgs/emscripten-ports/repositories?type=all
https://github.com/orgs/emscripten-ports/repositories?type=all
https://docs.conda.io/projects/conda-build/en/latest/resources/define-metadata.html
https://github.com/pyodide/pyodide/pull/795

Pyodide, Release 0.21.1

package
package/name

The name of the package. It must match the name of the package used when expanding the tarball, which is sometimes
different from the name of the package in the Python namespace when installed. It must also match the name of the
directory in which the meta.yaml file is placed. It can only contain alphanumeric characters, -, and _

package/version

The version of the package.

source
source/url

The URL of the source tarball.

The tarball may be in any of the formats supported by Python’s shutil.unpack_archive: tar, gztar, bztar,
xztar, and zip.

source/extract_dir

The top level directory name of the contents of the source tarball (i.e. once you extract the tarball, all the contents are
in the directory named source/extract_dir). This defaults to the tarball name (sans extension).

source/path

Alternatively to source/url, a relative or absolute path can be specified as package source. This is useful for local
testing or building packages which are not available online in the required format.

If a path is specified, any provided checksums are ignored.

source/md5

The MDS5 checksum of the tarball. It is recommended to use SHA256 instead of MD5. At most one checksum entry
should be provided per package.

source/sha256

The SHA256 checksum of the tarball. It is recommended to use SHA256 instead of MD5. At most one checksum entry
should be provided per package.

3.2. Development 89

Pyodide, Release 0.21.1

source/patches

A list of patch files to apply after expanding the tarball. These are applied using patch -pl from the root of the source
tree.

source/extras

Extra files to add to the source tree. This should be a list where each entry is a pair of the form (src, dst). The src
path is relative to the directory in which the meta.yaml file resides. The dst path is relative to the root of source tree
(the expanded tarball).

build
build/cflags

Extra arguments to pass to the compiler when building for WebAssembly.

(This key is not in the Conda spec).

build/cxxflags

Extra arguments to pass to the compiler when building C++ files for WebAssembly. Note that both cflags and
cxxflags will be used when compiling C++ files. A common example would be to use -std=c++11 for code that
makes use of C++11 features.

(This key is not in the Conda spec).

build/ldflags

Extra arguments to pass to the linker when building for WebAssembly.

(This key is not in the Conda spec).

build/exports

Which symbols should be exported from the shared object files. Possible values are:
* pyinit: The default. Only export Python module initialization symbols of the form PyInit_some_module.

* requested: Export the functions that are marked as exported in the object files. Switch to this if pyinit doesn’t
work. Useful for packages that use ctypes or d1sym to access symbols.

* whole_archive: Uses -W1, --whole-archive to force inclusion of all symbols. Use this when neither pyinit
nor explicit work.

90 Chapter 3. Table of contents

Pyodide, Release 0.21.1

build/backend-flags

Extra flags to pass to the build backend (e.g., setuptools, flit, etc).

build/library

Should be set to true for library packages. Library packages are packages that are needed for other packages but are not
Python packages themselves. For library packages, the script specified in the build/script section is run to compile
the library. See the zlib meta.yaml for an example of a library package specification.

build/sharedlibrary

Should be set to true for shared library packages. Shared library packages are packages that are needed for other
packages, but are loaded dynamically when Pyodide is run. For shared library packages, the script specified in the
build/script section is run to compile the library. The script should build the shared library and copy it into a
subfolder of the source folder called install. Files or folders in this install folder will be packaged to make the
Pyodide package. See the CLAPACK meta.yaml for an example of a shared library specification.

build/script

The script section is required for a library package (build/library set to true). For a Python package this section is
optional. If it is specified for a Python package, the script section will be run before the build system runs setup.py.
This script is run by bash in the directory where the tarball was extracted.

build/cross-script

This script will run after build/script. The difference is that it runs with the target environment variables and
sysconfigdata and with the pywasmcross compiler symlinks. Any changes to the environment will persist to the
main build step but will not be seen in the build/post step (or anything else done outside of the cross build environ-
ment). The working directory for this script is the source directory.

build/post

Shell commands to run after building the library. These are run with bash, and there are two special environment
variables defined:

* $SITEPACKAGES: The site-packages directory into which the package has been installed.
* $PKGDIR: The directory in which the meta.yaml file resides.

(This key is not in the Conda spec).

3.2. Development 91

https://github.com/pyodide/pyodide/blob/main/packages/zlib/meta.yaml
https://github.com/pyodide/pyodide/blob/main/packages/CLAPACK/meta.yaml

Pyodide, Release 0.21.1

build/unvendor-tests

Whether to unvendor tests found in the installation folder to a separate package <package-name>-tests. If this option
is true and no tests are found, the test package will not be created. Default: true.

requirements
requirements/run

A list of required packages.

(Unlike conda, this only supports package names, not versions).

test
test/imports

List of imports to test after the package is built.

Supported Environment Variables

The following environment variables can be used in the scripts in the meta.yaml files:

* PYODIDE_ROOT: The path to the base Pyodide directory

PYMAJOR: Current major Python version

PYMINOR: Current minor Python version

PYMICRO: Current micro Python version

SIDE_MODULE_CFLAGS: The standard CFLAGS for a side module. Use when compiling libraries or shared
libraries.

SIDE_MODULE_LDFLAGS: The standard LDFLAGS for a side module. Use when linking a shared library.

NUMPY_LIB: Use -L$NUMPY_LIB as a ldflag when linking -1npymath or -1npyrandom.

Rust/PyO3 Packages

We currently build cryptography which is a Rust extension built with PyO3 and setuptools-rust. It should be
reasonably easy to build other Rust extensions. Currently it is necessary to run source $CARGO_HOME/env in the
build script as shown here, but other than that there may be no other issues if you are lucky.

As mentioned here, by default certain wasm-related RUSTFLAGS are set during build.script and can be removed
with export RUSTFLAGS="".

92 Chapter 3. Table of contents

https://github.com/pyodide/pyodide/blob/main/packages/cryptography/meta.yaml
https://github.com/pyodide/pyodide/issues/2706#issuecomment-1154655224

Pyodide, Release 0.21.1

3.2.3 How to Contribute

Thank you for your interest in contributing to Pyodide! There are many ways to contribute, and we appreciate all of
them. Here are some guidelines & pointers for diving into it.

Development Workflow

To contribute code, see the following steps,

1.
2.

Fork the Pyodide repository https://github.com/pyodide/pyodide on Github.

If you are on Linux, you can skip this step. On Windows and MacOS you have a choice. The first option is to
manually install Docker:

¢ on MacOS follow these instructions

* on Windows, install WSL 2, then Docker. Note that Windows filesystem access from WSL2 is very slow
and should be avoided when building Pyodide.

The second option is to use a service that provides a Linux development environment, such as
¢ Github Codespaces
¢ gitpod.io

e or a remote Linux VM with SSH connection.

. Clone your fork of Pyodide

git clone https://github.com/<your-username>/pyodide.git

and add the upstream remote,

git remote add upstream https://github.com/pyodide/pyodide.git

. While the build will happen inside Docker you still need a development environment with Python 3.10 and ideally

Node.js. These can be installed for instance with,

conda create -c conda-forge -n pyodide-env python=3.10.2 nodejs
conda activate pyodide-env

or via your system package manager.

. Install requirements (it’s recommended to use a virtualenv or a conda env),

pip install -r requirements.txt

. Enable pre-commit for code style,

pre-commit install

This will run a set of linters for each commit.

. Follow Building from sources instructions.

. See Testing and benchmarking documentation.

3.2.

Development 93

https://github.com/pyodide/pyodide
https://docs.docker.com/desktop/mac/install/
https://docs.microsoft.com/en-us/windows/wsl/install
https://github.com/features/codespaces
https://gitpod.io
https://pre-commit.com/

Pyodide, Release 0.21.1

Code of Conduct

Pyodide has adopted a Code of Conduct that we expect all contributors and core members to adhere to.

Development

Work on Pyodide happens on GitHub. Core members and contributors can make Pull Requests to fix issues and add
features, which all go through the same review process. We’ll detail how you can start making PRs below.

We’ll do our best to keep main in a non-breaking state, ideally with tests always passing. The unfortunate reality of
software development is sometimes things break. As such, main cannot be expected to remain reliable at all times. We
recommend using the latest stable version of Pyodide.

Pyodide follows semantic versioning - major versions for breaking changes (x.0.0), minor versions for new features
(0.x.0), and patches for bug fixes (0.0.x).

We keep a file, docs/changelog.md, outlining changes to Pyodide in each release. We like to think of the audience for
changelogs as non-developers who primarily run the latest stable. So the change log will primarily outline user-visible
changes such as new features and deprecations, and will exclude things that might otherwise be inconsequential to the
end user experience, such as infrastructure or refactoring.

Bugs & Issues

We use Github Issues for announcing and discussing bugs and features. Use this link to report a bug or issue. We
provide a template to give you a guide for how to file optimally. If you have the chance, please search the existing issues
before reporting a bug. It’s possible that someone else has already reported your error. This doesn’t always work, and
sometimes it’s hard to know what to search for, so consider this extra credit. We won’t mind if you accidentally file a
duplicate report.

Core contributors are monitoring new issues & comments all the time, and will label & organize issues to align with
development priorities.

How to Contribute

Pull requests are the primary mechanism we use to change Pyodide. GitHub itself has some great documentation on
using the Pull Request feature. We use the “fork and pull” model described here, where contributors push changes to
their personal fork and create pull requests to bring those changes into the source repository.

Please make pull requests against the main branch.
If you’re looking for a way to jump in and contribute, our list of good first issues is a great place to start.

If you'd like to fix a currently-filed issue, please take a look at the comment thread on the issue to ensure no one is
already working on it. If no one has claimed the issue, make a comment stating you’d like to tackle it in a PR. If
someone has claimed the issue but has not worked on it in a few weeks, make a comment asking if you can take over,
and we’ll figure it out from there.

We use pytest, driving Selenium as our testing framework. Every PR will automatically run through our tests, and our
test framework will alert you on GitHub if your PR doesn’t pass all of them. If your PR fails a test, try to figure out
whether or not you can update your code to make the test pass again, or ask for help. As a policy we will not accept a
PR that fails any of our tests, and will likely ask you to add tests if your PR adds new functionality. Writing tests can
be scary, but they make open-source contributions easier for everyone to assess. Take a moment and look through how
we’ve written our tests, and try to make your tests match. If you are having trouble, we can help you get started on our
test-writing journey.

94 Chapter 3. Table of contents

http://semver.org/
https://github.com/pyodide/pyodide/issues
https://github.com/pyodide/pyodide/issues/new
https://help.github.com/articles/about-pull-requests/
https://help.github.com/articles/about-pull-requests/
https://github.com/pyodide/pyodide/labels/good%20first%20issue
https://pytest.org
https://www.seleniumhq.org

Pyodide, Release 0.21.1

All code submissions should passmake 1lint. Python is checked with f1ake8, black and mypy. JavaScriptis checked
with prettier. C is checked against the Mozilla style in clang-format.

Contributing to the “core” C Code

See Contributing to the “core” C Code.

Documentation

Documentation is a critical part of any open source project, and we are very welcome to any documentation improve-
ments. Pyodide has a documentation written in Markdown in the docs/ folder. We use the MyST for parsing Mark-
down in sphinx. You may want to have a look at the MyST syntax guide when contributing, in particular regarding
cross-referencing sections.

Building the docs

From the directory docs, first install the Python dependencies with pip install -r requirements-doc.txt. You
also need to install JsDoc, which is a node dependency. Install it with sudo npm install -g jsdoc. Then to build
the docs run make html. The built documentation will be in the subdirectory docs/_build/html. To view them, cd
into _build/html and start a file server, for instance http-server.

Migrating patches

It often happens that patches need to be migrated between different versions of upstream packages.
If patches fail to apply automatically, one solution can be to
1. Checkout the initial version of the upstream package in a separate repo, and create a branch from it.
2. Add existing patches with git apply <path.path>
3. Checkout the new version of the upstream package and create a branch from it.
4

. Cherry-pick patches to the new version,

git cherry-pick <commit-hash>

and resolve conflicts.

5. Re-export last N commits as patches e.g.

git format-patch -<N> -N --no-stat HEAD -o <out_dir>

Maintainer information

For information about making releases see Maintainer information.

3.2. Development 95

https://myst-parser.readthedocs.io/en/latest/using/syntax.html#targets-and-cross-referencing
https://myst-parser.readthedocs.io/en/latest/using/syntax.html#the-myst-syntax-guide
https://myst-parser.readthedocs.io/en/latest/using/syntax.html#targets-and-cross-referencing

Pyodide, Release 0.21.1

License

All contributions to Pyodide will be licensed under the Mozilla Public License 2.0 (MPL 2.0). This is considered a
“weak copyleft” license. Check out the tl;drLegal entry for more information, as well as Mozilla’s MPL 2.0 FAQ if you
need further clarification on what is and isn’t permitted.

Get in Touch

* Gitter: #pyodide channel at gitter.im

Contributing to the “core” C Code

This file is intended as guidelines to help contributors trying to modify the C source files in src/core.

What the files do

The primary purpose of core is to implement type translations between Python and JavaScript. Here is a breakdown
of the purposes of the files.

* main — responsible for configuring and initializing the Python interpreter, initializing the other source files, and
creating the _pyodide_core module which is used to expose Python objects to pyodide_py. main. c also tries
to generate fatal initialization error messages to help with debugging when there is a mistake in the initialization
code.

* keyboard_interrupt — This sets up the keyboard interrupts system for using Pyodide with a webworker.

Backend utilities

e hiwire — A helper framework. It is impossible for wasm to directly hold owning references to JavaScript objects.
The primary purpose of hiwire is to act as a surrogate owner for JavaScript references by holding the references in
aJavaScript Map. hiwire also defines a wide variety of EM_JS helper functions to do JavaScript operations on the
held objects. The primary type that hiwire exports is JsRef. References are created with Hiwire.new_value
(only can be done from JavaScript) and must be destroyed from C with hiwire_decref or hiwire_CLEAR, or
from JavaScript with Hiwire.decref.

e error_handling — defines macros useful for error propagation and for adapting JavaScript functions to the
CPython calling convention. See more in the Error Handling Macros section.

Type conversion from JavaScript to Python

* js2python — Translates basic types from JavaScript to Python, leaves more complicated stuff to jsproxy.

* jsproxy — Defines Python classes to proxy complex JavaScript types into Python. A complex file responsible
for many of the core behaviors of Pyodide.

96 Chapter 3. Table of contents

https://www.mozilla.org/en-US/MPL/2.0/
https://tldrlegal.com/license/mozilla-public-license-2.0-(mpl-2)
https://www.mozilla.org/en-US/MPL/2.0/FAQ/
https://gitter.im/pyodide/community

Pyodide, Release 0.21.1

Type conversion from Python to JavaScript

e python2js — Translates types from Python to JavaScript, implicitly converting basic types and creating pyprox-
ies for others. It also implements explicit conversion from Python to JavaScript (the toJs method).

e python2js_buffer — Attempts to convert Python objects that implement the Python Buffer Protocol. This
includes bytes objects, memoryviews, array.array and a wide variety of types exposed by extension modules
like numpy. If the data is a 1d array in a contiguous block it can be sliced directly out of the wasm heap to produce
a JavaScript TypedArray, but JavaScript does not have native support for pointers, so higher dimensional arrays
are more complicated.

* pyproxy — Defines a JavaScript Proxy object that passes calls through to a Python object. Another impor-
tant core file, PyProxy.apply is the primary entrypoint into Python code. pyproxy.c is much simpler than
jsproxy . c though.

CPython APIs
Conventions for indicating errors

The two main ways to indicate errors:

1. If the function returns a pointer, (most often PyObject®, char¥*, or const char¥) then to indicate an error set
an exception and return NULL.

2. Ifthe functionreturns int or float and a correct output must be nonnegative, to indicate an error set an exception
and return - 1.

Certain functions have “successful errors” like PyIter_Next (successful error is StopIteration) and
PyDict_GetItemWithError (successful error is KeyError). These functions will return NULL without setting an
exception to indicate the “successful error” occurred. Check what happened with PyErr_Occurred. Also, functions
that return int for which -1 is a valid return value will return -1 with no error set to indicate that the result is -1 and
-1 with an error set if an error did occur. The simplest way to handle this is to always check PyErr_Occurred.

Lastly, the argument parsing functions PyArg_ParseTuple, PyArg_Parse, etc are edge cases. These return true on
success and return false and set an error on failure.

Python APIs to avoid:

e PyDict_GetItem, PyDict_GetItemString, and _PyDict_GetItemId These APIs do not do cor-
rect error reporting and there is talk in the Python community of deprecating them going for-
ward. Instead, use PyDict_GetItemWithError and _PyDict_GetItemIdWithError (there is no
PyDict_GetItemStringWithError API because use of GetXString APIs is also discouraged).

e PyObject_HasAttrString, PyObject_GetAttrString, PyDict_GetItemString,
PyDict_SetItemString, PyMapping_HasKeyString etc, etc. These APIs cause wasteful repeated string con-
version. If the string you are using is a constant, e.g., PyDict_GetItemString(dict, "identifier"),then
make an id with Py_Identifier(identifier) and then use _PyDict_GetItemId(&PyId_identifier).
If the string is not constant, convert it to a Python object with PyUnicode_FromString() and then use e.g.,
PyDict_GetItem.

* PyModule_AddObject. This steals a reference on success but not on failure and requires unique cleanup code.
Instead, use PyObject_SetAttr.

3.2. Development 97

https://docs.python.org/3/c-api/buffer.html

Pyodide, Release 0.21.1

Error Handling Macros

The file error_handling.h defines several macros to help make error handling as simple and uniform as possible.

Error Propagation Macros

In a language with exception handling as a feature, error propagation requires no explicit code, it is only if you want to
prevent an error from propagating that you use a try/catch block. On the other hand, in C all error propagation must
be done explicitly.

We define macros to help make error propagation look as simple and uniform as possible. They can only be used
in a function with a finally: label which should handle resource cleanup for both the success branch and all the
failing branches (see structure of functions section below). When compiled with DEBUG_F, these commands will write
a message to console. error reporting the line, function, and file where the error occurred.

e FATL() — unconditionally goto finally;.

e FATIL_TF_NULL(ptr) — goto finally; if ptr == NULL. This should be used with any function that returns
a pointer and follows the standard Python calling convention.

e FAIL_TF_MINUS_ONE(num) — goto finally; if num == -1. This should be used with any function that
returns a number and follows the standard Python calling convention.

e FATIL_TF_NONZERO(num) — goto finally; if num != 0. Can be used with functions that return any nonzero
error code on failure.

e FATL_TF_ERR_OCCURRED() - goto finally; if the Python error indicator is set (in other words if
PyErr_Occurred()).

e FAIL_IF_ERR_MATCHES (python_err_type) —goto finally; if PyErr_ExceptionMatches(python_err_type),
for example FAIL_IF_ERR_MATCHES (PyExc_AttributeError);

JavaScript to CPython calling convention adaptors

If we call a JavaScript function from C and that JavaScript function throws an error, it is impossible to catch
it in C. We define two EM_JS adaptors to convert from the JavaScript calling convention to the CPython calling
convention. The point of this is to ensure that errors that occur in EM_JS functions can be handled in C code
using the FATL_*"" macros. When compiled with DEBUG_F, when a JavaScript error is thrown a
message will also be written to console.error. The wrappers do roughly the following:

try {
// body of function here

} catch (e) {
// wrap e in a Python exception and set the Python error indicator
// return error code

}

There are two variants: EM_JS_NUM returns -1 as the error code, EM_JS_REF returns NULL == @ as the error code. A
couple of simple examples: Use EM_JS_REF when return value is a JsRef:

EM_JS_REF(JsRef, hiwire_call, (JsRef idfunc, JsRef idargs), {
let jsfunc = Hiwire.get_value(idfunc);
let jsargs = Hiwire.get_value(idargs);
return Hiwire.new_value(jsfunc(... jsargs));

b;

98 Chapter 3. Table of contents

Pyodide, Release 0.21.1

Use EM_JS_REF when return value is a PyObject:

EM_JS_REF(PyObject*, __js2python, (JsRef id), {
// body here
I9H

If the function returns void, use EM_JS_NUM with return type errcode. errcode is a typedef for int. EM_JS_NUM
will automatically return -1 if an error occurs and 0 if not:

EM_JS_NUM(errcode, hiwire_set_member_int, (JsRef idobj, int idx, JsRef idval), {
Hiwire.get_value(idobj)[idx] = Hiwire.get_value(idval);

B;

If the function returns int or bool use EM_JS_NUM:

EM_JS_NUM(int, hiwire_get_length, (JsRef idobj), {
return Hiwire.get_value(idobj).length;
};

These wrappers enable the following sort of code:

try:
jsfunc(
except JsException:
print("Caught an exception thrown in JavaScript!")

Structure of functions

In C it takes special care to correctly and cleanly handle both reference counting and exception propagation. In Python
(or other higher level languages), all references are released in an implicit finally block at the end of the function.
Implicitly, it is as if you wrote:

def £Q:
try: # implicit
a = do_something()
b = do_something else()
c=a+b
return some_func(c)
finally:
implicit, free references both on successful exit and on exception
decref(a)
decref(b)
decref(c)

Freeing all references at the end of the function allows us to separate reference counting boilerplate from the “actual
logic” of the function definition. When a function does correct error propagation, there will be many different execution
paths, roughly linearly many in the length of the function. For example, the above pseudocode could exit in five different
ways: do_something could raise an exception, do_something_else could raise an exception, a + b could raise an
exception, some_func could raise an exception, or the function could return successfully. (Even a Python function like
def f(a,b,c,d): return (a + b) * c - dhas four execution paths.) The point of the try/finally block is
that we know the resources are freed correctly without checking once for each execution path.

To do this, we divide any function that produces more than a couple of owned PyObject*s or JsRefs into several
“segments”. The more owned references there are in a function and the longer it is, the more important it becomes

3.2. Development 99

Pyodide, Release 0.21.1

to follow this style carefully. By being as consistent as possible, we reduce the burden on people reading the code to
double-check that you are not leaking memory or errors. In short functions it is fine to do something ad hoc.

1. The guard block. The first block of a function does sanity checks on the inputs and argument parsing, but only
to the extent possible without creating any owned references. If you check more complicated invariants on the
inputs in a way that requires creating owned references, this logic belongs in the body block.

Here’s an example of a METH_VARARGS function:

PyObject*
JsImport_CreateModule(PyObject® self, PyObject® args)
{
// Guard
PyObject* name;
PyObject* jsproxy;
// PyArg_UnpackTuple uses an unusual calling convention:
// It returns ‘false' on failure...
if (!'PyArg_UnpackTuple(args, 'create_module", 2, 2, &spec, &jsproxy)) {
return NULL;
}
if (!JsProxy_Check(jsproxy)) {
PyErr_SetString(PyExc_TypeError, "package is not an instance of jsproxy");
return NULL;
}

2. Forward declaration of owned references. This starts by declaring a success flagbool success = false. This
will be used in the finally block to decide whether the finally block was entered after a successful execution or
after an error. Then declare every reference counted variable that we will create during execution of the function.
Finally, declare the variable that we are planning to return. Typically, this will be called result, but in this case
the function is named CreateModule so we name the return variable module.

bool success = false;

// Note: these are all the objects that we will own. If a function returns

// a borrow, we XINCREF the result so that we can CLEAR it in the finally block.
// Reference counting is hard, so it's good to be as explicit and consistent

// as possible!

PyObject* sys_modules = NULL;

PyObject® importlib_machinery = NULL;

PyObject* ModuleSpec = NULL;

PyObject* spec = NULL;

PyObject* __dir__ = NULL;
PyObject* module_dict = NULL;
// result

PyObject* module = NULL;

3. The body of the function. The vast majority of API calls can return error codes. You MUST check every
fallible API for an error. Also, as you are writing the code, you should look up every Python API you use that
returns a reference to determine whether it returns a borrowed reference or a new one. If it returns a borrowed
reference, immediately Py_XINCREF () the result to convert it into an owned reference (before FAIL_IF_NULL,
to be consistent with the case where you use custom error handling).

name = PyUnicode_FromString(name_utf8);

FAIL_IF_NULL (name);

sys_modules = PyImport_GetModuleDict(); // returns borrow
Py_XINCREF (sys_modules);

(continues on next page)

100 Chapter 3. Table of contents

Pyodide, Release 0.21.1

(continued from previous page)

FAIL_IF_NULL(sys_modules);
module = PyDict_GetItemWithError(sys_modules, name); // returns borrow
Py_XINCREF (module) ;
FAIL_IF_NULL (module);
if(module && !JsImport_Check(module)){
PyErr_Format (PyExc_KeyError,
"Cannot mount with name '%s': there is an existing module by this name that was.
—not mounted with 'pyodide.mountPackage'."

, hame
)H
FAILQ;

3
// ... [SNIP]

4. The finally block. Here we will clear all the variables we declared at the top in exactly the same order. Do not
clear the arguments! They are borrowed. According to the standard Python function calling convention, they are
the responsibility of the calling code.

success = true;
finally:
Py_CLEAR(sys_modules) ;
Py_CLEAR(importlib_machinery) ;
Py_CLEAR(ModuleSpec) ;
Py_CLEAR(spec);
Py_CLEAR(__dir__);
Py_CLEAR(module_dict);
if(!success){
Py_CLEAR(result);
}

return result;

One case where you do need to Py_CLEAR a variable in the body of a function is if that variable is allocated in a loop:

// refcounted variable declarations
PyObject* pyentry = NULL;
// ... other stuff
Py_ssize_t n = PySequence_Length(pylist);
for (Py_ssize_t i = 0; i < nj; i++) {
pyentry = PySequence_GetItem(pydir, i);
FAIL_IF_MINUS_ONE(do_something(pyentry));
Py_CLEAR(pyentry); // important to use Py_CLEAR and not Py_decref.
}

success = true

finally:
// have to clear pyentry at end too in case do_something failed in the loop body
Py_CLEAR(pyentry);

3.2. Development 101

Pyodide, Release 0.21.1

Testing

Any nonstatic C function called some_name defined not using EM_JS will be exposed as pyodide._module.
_some_name, and this can be used in tests to good effect. If the arguments / return value are not just numbers and
booleans, it may take some effort to set up the function call.

If you want to test an EM_JS function, consider moving the body of the function to an API defined on Module. You
should still wrap the function with EM_JS_REF or EM_JS_NUM in order to get a function with the CPython calling
convention.

Maintainer information
Making a release

For branch organization we use a variation of the GitHub Flow with the latest release branch named stable (due to
ReadTheDocs constraints).

Release Instructions

1. From the root directory of the repository run

./tools/bump_version.py --new-version <new_version>
./tools/bump_version.py --new_version <new_version> --dry-run

and check that the diff is correct with git diff. Try using ripgrep to make sure there are no extra old versions
lying around e.g.,rg -F "0.18",rg -F dev®,rg -F dev.0.

2. Make sure the change log is up-to-date. (Skip for alpha releases.)
* Indicate the release date in the change log.

* Generate the list of contributors for the release at the end of the changelog entry with,

git shortlog -s LAST_TAG.. | cut -f2- | grep -v '\[bot\]' | sort --ignore-case.
~| tr "\n'" ";" | sed 's/;/, /g;s/, $//' | fold -s

where LAST_TAG is the tag for the last release.
3. Make a PR with the updates from steps 1 and 2. Merge the PR.

4. (Major release only.) Assuming the upstream stable branch exists, rename it to a release branch for the previous
major version. For instance if last release was, 0.20. 0, the corresponding release branch would be 0.20.X,

git fetch upstream

git checkout stable

git checkout -b 0.20.X

git push upstream 0.20.X

git branch -D stable # delete locally

5. Create a tag X.Y.Z (without leading v) and push it to upstream,

git tag X.Y.Z
git push upstream X.Y.Z

Wait for the CI to pass and create the release on GitHub.

102 Chapter 3. Table of contents

https://guides.github.com/introduction/flow/

Pyodide, Release 0.21.1

6. (Major release only). Create a new stable branch from this tag,

git checkout -b stable
git push upstream stable --force

7. Revert the release commit. If making a major release, increment the version to the next development version
specified by Semantic Versioning.

If you just released 0.22.0, then set the next version to 0.23.0
./tools/bump_version.py --new-version 0.23.0.dev0

8. Update these instructions with any relevant changes.

Making a minor release

For a minor release, commits need to be added to the stable branch, ideally via a PR. This can be done with either,

* git cherry picking individual commits,

git checkout stable

git pull

git checkout -b backport-branch
git cherry-pick <commit-hash>

¢ or with interactive rebase,

git fetch upstream

git checkout stable

git pull

git checkout -b backport-branch
git rebase -i upstream/main

and indicate which commits to take from main in the UL

Then follow the relevant steps from Release Instructions.

Making an alpha release

Name the first alpha release x.x.xal and in subsequent alphas increment the final number. Follow the relevant steps
from Release Instructions.

Fixing documentation for a released version

Cherry pick the corresponding documentation commits to the stable branch. Use [skip ci] inthe commit message.

3.2. Development 103

Pyodide, Release 0.21.1

3.2.4 Testing and benchmarking

Testing

Running the Python test suite

1. Install the following dependencies into the default Python installation:

pip install pytest-pyodide pytest-httpserver

pytest-pyodide is a pytest plugin for testing Pyodide and third-party applications that use Pyodide.
See: pytest-pyodide for more information.
2. Install geckodriver or chromedriver and check that they are in your PATH.

3. To run the test suite, run pytest from the root directory of Pyodide:

pytest

There are 3 test locations that are collected by pytest,
* src/tests/: general Pyodide tests and tests running the CPython test suite

* pyodide-build/pyodide_build/tests/: tests related to Pyodide build system (do not require selenium or
playwright to run)

* packages/*/test_*: package specific tests.

You can run the tests from a specific file with:

pytest path/to/test/file.py

Some browsers sometimes produce informative errors than others so if you are getting confusing errors it is worth
rerunning the test on each browser. You can use --runtime commandline option to specify the browser runtime.

pytest --runtime firefox
pytest --runtime chrome
pytest --runtime node

Custom test marks

We support custom test marks:

@pytest.mark.skip_refcount_check and pytest.mark.skip_pyproxy_check disable respectively the check
for JavaScript references and the check for PyProxies. If a test creates JavaScript references or PyProxies and does not
clean them up, by default the tests will fail. If a test is known to leak objects, it is possible to disable these checks with
these markers.

104 Chapter 3. Table of contents

https://github.com/pyodide/pytest-pyodide
https://github.com/mozilla/geckodriver/releases
https://sites.google.com/a/chromium.org/chromedriver/downloads

Pyodide, Release 0.21.1

Running the JavaScript test suite

To run tests on the JavaScript Pyodide package using Mocha, run the following commands,

cd src/js
npm test

To check TypeScript type definitions run,

npx tsd

Manual interactive testing

To run tests manually:
1. Build Pyodide, perhaps in the docker image
2. From outside of the docker image, cd into the dist directory and run python -m http.server.

3. Once the webserver is running, simple interactive testing can be run by visiting the URL: http://
localhost:<PORT>/console.html. It’s recommended to use pyodide.runPython in the browser console
rather than using the repl.

Benchmarking

To run common benchmarks to understand Pyodide’s performance, begin by installing the same prerequisites as for
testing. Then run:

PYODIDE_PACKAGES="numpy,matplotlib" make benchmark

Linting

We lint with pre-commit.

Python is linted with flake8, black and mypy. JavaScript, markdown, yaml, and html are linted with prettier. C
is linted with clang-format.

To lint the code, run:

pre-commit run -a

You can have the linter automatically run whenever you commit by running

pip install pre-commit
pre-commit install

and this can later be disabled with

pre-commit uninstall

If you don’t lint your code, certain lint errors will be fixed automatically by pre-commit .ci which will push fixes to
your branch. If you want to push more commits, you will either have to pull in the remote changes or force push.

3.2. Development 105

Pyodide, Release 0.21.1

3.2.5 Debugging tips

See Emscripten’s page about debugging which has extensive info about the various debugging options available. The
Wasm Binary Toolkit is super helpful for analyzing .wasm, .so, .a, and .o files.

Also whenever you can reproduce a bug in chromium make sure to use a chromium-based browser (e.g., chrome) for
debugging. They are better at it.

Run prettier on pyodide.asn. js

Before doing any debugger I strongly recommend running npx prettier -w pyodide.asm. js. This makes every-
thing much easier.

Linker error: function signature mismatch

You may get linker errors as follows:

wasm-1d: error: function signature mismatch: some_func
>>> defined as (i32, 132) -> 132 in some_static_lib.a(a.o)
>>> defined as (i32) -> i32 in b.o

This is especially common in Scipy. Oftentimes it isn’t too hard to figure out what is going wrong because it told you
the both the symbol name (some_func) and the object files involved (this is much easier than the runtime version of
this error!). If you can’t tell what is going on from looking at the source files, it’s time to pull out wasm-objdump.
In this case a.o is part of some_static_lib.a so you first need to get it out with ar -x some_static_lib.a
a.o. Now we can check if a.o imports or defines some_func. To check for imports, use wasm-objdump a.o -j
Import -x | grep some_func. If a.o is importing some_func you should see a line like: - func[0] sig=1
<env.some_func> <- env.some_func in the output.

If not, you will see nothing or things like some_func2. To check if a.o defines some_func (this is a bit redun-
dant because you can conclude whether or not does from whether it imports it) we can use: wasm-objdump a.o -j
Function -x | grep some_func, if a.o defines some_func you will see something like: - func[0] sig=0
<some_func>.

Now the question is what these signatures mean (though we already know this from the linker error). To find out what
signature 0 is, you can use wasm-objdump a.o -j Type -x | grep "type\[O\]".

Using this, we can verify that a.o imports some_func with signature (132, i32) -> i32 but b.o exports it with
signature (1i32) -> 132, hence the linker error.

This process works in basically the same way for already-linked .so and .wasm files, which can help if you get the
load-time version of this linker error.

Misencoded Wasm

On a very rare occasion you may run into a misencoded object file. This can cause different tools to crash, wasm-1d
may panic, etc. wasm-objdump will just generate a useless error message. In this case, I recommend wasm-ob jdump
-s --debug 2>&1 | grep -i error -C 20 (or pipe to less), which will result in more diagnostic information.
Sometimes the crash happens quite a lot later than the actual error, look for suspiciously large constants, these are often
the first sign of something gone haywire.

After this, you can get out a hex editor and consult the WebAssembly binary specification Cross reference against the
hex addresses appearing in wasm-objdump --debug. With enough diligence you can locate the problem.

106 Chapter 3. Table of contents

https://emscripten.org/docs/porting/Debugging.html
https://github.com/WebAssembly/wabt
https://webassembly.github.io/spec/core/binary/index.html

Pyodide, Release 0.21.1

Debugging RuntimeError: function signhature mismatch

First recompile with -g2. -g2 keeps symbols but won’t try to use C source maps which mostly make our life harder
(though it may be helpful to link one copy with -g2 and one with -g3 and run them at the same time cf Using C source
maps).

The browser console will show something like the following. Click on the innermost stack trace:

Stack (most recent call first):
File "<console>", line 1 in <module>
File "/lib/python3.1l/site-packages/ pyodide/ base.py", line 351 in run_async
File "/1lib/python3.11/site-packages/pyodide/console.py", line 362 in runcode
File "/lib/python3.11/site-packages/pyodide/console.py", line 474 in runcode
File "/lib/python3.11/asyncio/events.py"”, line 80 in run
File "/lib/python3.11/site-packages/pyodide/webloop.py", line 151 in run_handle

@ »Uncaught RuntimeError: null function or function signature mismatch
at cfunction_call (pyodide.asm.wasm:0xle325c)

| at PyObject MakeTpCall (pyodide.asm.wasm:0x1al6b7) QI"I\
at PyObject Vectorcall (pyodide.asm.wasm:0xlalcab)
at PyEval EvalFrameDefault (pyodide.asm.wasm:0x271855) kera
at PyEval EvalCode (pyodide.asm.wasm:0x269262)

at builtin_eval (pyodide.asm.wasm:0x266613)

at cfunction vectorcall FASTCALL (pyodide.asm.wasm:0xlel2e61)
at PyObject Vectorcall (pyodide.asm.wasm:0xlalcbh8)

at PyEval EvalFrameDefault (pyodide.asm.wasm:0x271855)

at gen_send _ex2 (pyodide.asm.wasm:0x1b548a)

Clicking the offset will (hopefully) take you to the corresponding wasm instruction, which should be a call_indirect.
If the offset is too large (somewhere between 0x0200000 and 0x0300000) you will instead see ;; text is
truncated due to size, see Dealing with ;; text is truncated due to size. In this example we see the following:

Ox01le3255 : end $label?
sk

Ox01e3256 local.get $var3

Ox01e3258 local.get $varl

Ox0le325a local.get $var8

call indirect (param i32 i32) (result i32)
Jx0b1le end $labell

0x01e3260 i32.const ©

0x01e3262 call $ Py CheckFunctionResult

Ox01le3265 end $label®

PDx01e3266 local.set $varo

Ox01e3268 local.get $vard

So we think we are calling a function pointer with signature (param i32 i32) (result i32) meaning that it takes
two 132 inputs and returns one 132 output. Set a breakpoint by clicking on the address, then refresh the page and
run the reproduction again. Sometimes these are on really hot code paths (as in the present example) so you probably
only want to set the breakpoint once Pyodide is finished loading. If your reproduction passes through the breakpoint
multiple times before crashing you can do the usual chore of counting how many times you have to press “Resume”
before the crash. Suppose you’ve done all this, and we’ve got the vm stopped at the bad instruction just before crashing:

3.2. Development 107

Pyodide, Release 0.21.1

0x05cf i32.add - P

0x65d0 call $PyModule AddType LT LT

0x05d2 drop » Watch

0x05d3 local.get $varl

0x05d5) v Breakpoints

0x05d6 (func $zero (;5;) (result 132))

0x05d6 (local $var@ 132) pyodide.asm.wasm:0x1e325¢c
0x05da lobal.get $ Py NoneStruct

@x05dc %ocal.tge $3grg7 EEE

0x05de local.get $var® v Expression

0x05e0 132.load vstack: Stack

giggg; Sg:;gg“ ! »0: i32 {value: 2852320}
0x05e6 i32.store p1l: i32 {value: 15116816}
0x05e9 local.get $var® »2: 132 {value: 13749792}
0x05eb) »3: i32 {value: 2798452}
Ox05ec (func $one (;6;)_ (param $var® i32) (result i32) »4: i32 {value: [[3100}
0x05ec (local $varl i32)

0x05f0 global.get $ Py NoneStruct v Local t\ ion
Ox05f2 local.tee s$varl b $var@: 132 {value: 15116816 Giﬂt;
0x0574 local.get $varl »$varl: 132 {value: 2798452} - r
0x0576 132.%oad »$var2: i32 {value: 0}
giggig S%jSEQ“ L b $var3: i32 {value: 13749792}
Ox05fc i32.store > $vard: i32 {value: 9139648}
Ox05Tf local.get $varl » $var5: 132 {value: 2852320}
0x0601) » $var6: i32 {value: 18200624}
gxgggg (Tl.(JTC $‘{w; (:;;)_3;?aram $vard 132) (param $varl i32) » $var7?: i32 {value: 1}

X ocal $var2 i)

0x0606 global.get $ Py NoneStruct »$var8: 132 {value: 13109}
0x0608 local.tee $var2 » Module

0x060a local.get $var2 v Call Stack

0x060c i32.load

0x060f i32.const 1 +~ ®» Scfunction_call

NeAS1 13

The bottom value on the stack is the function pointer. In this case it’s the fourth item on the stack, so you can type the
following into the console:

> pyodide._module.wasmTable.get(stack[4].value) // stack[4].value === 13109
< f $one() { [native code] }?

So the bad function pointer’s symbol is one! Now clicking on $one brings you to the source for it:

(func %$one (;6;) (param $var® 132) (result 132)
(local $varl i32)
global.get $ Py NoneStruct
local.tee Svarl
local.get Svarl

and we see the function pointer has signature (param $var® i32) (result i32), meaning it takes one 132 input
and returns one 132 output. Note that if the function had void return type it might look like (param $var® i32
$varl i32) (with no result). Confusion between 132 and void return type is the single most common cause of
this error.

Now we basically know the cause of the trouble. You can look up cfunction_call in the CPython source code with
the help of ripgrep and locate the line that generates this call, and look up one in the appropriate source and find the
signature. Another approach to locate the call site would be to recompile with -g3 and use source maps Using C source
maps to locate the problematic source code. With the same process of reproduce crash ==> click innermost stack frame
==> see source file and line where the error occurs. In this case we see that the crash is on the line:

result = _PyCFunction_TrampolineCall(meth, self, args);

in the file /src/cpython/build/Python-3.11.0dev0®/0Objects/methodobject.c. Unfortunately, source maps
are useless for the harder problem of finding the callee because compiling with -g3 increases the number of function
pointers so the function pointer we are calling is in a different spot. I know of no way to determine the bad function
pointer when compiling with -g3.

108 Chapter 3. Table of contents

Pyodide, Release 0.21.1

Sometimes (particularly with Scipy/CLAPACK) the issue will be a mismatch between (param i32 i32 i32 i32
132 132 i32 i32 i32 i32 i32 i32 i32 i32) (result i32) and (param i32 i32 i32 i32 i32 i32
i32 i32 i32 i32 i32 i32 i32 i32 i32) (result i32)

(14 vs 15 parameters) which might be a little hard to discern. I copy the signature into the Javascript console and run
"i32 ... i32".split(" ").length in this case.

Dealing with ;; text is truncated due to size

If you are debugging and run into the dreaded ;; text is truncated due to size error message, the solution

is to compile a modified version of Chrome devtools with a larger wasm size cap. Surprisingly, this is not actually all
that hard.

These instructions are adapted from here: https://www.diverto.hr/en/blog/2020-08-15-WebAssembly-limit/

In short,

git clone https://chromium.googlesource.com/chromium/tools/depot_tools.git
./fetch devtools-frontend
cd devtools-frontend

Apply the following change:

--- a/front_end/entrypoints/wasmparser_worker/WasmParserWorker.ts
+++ b/front_end/entrypoints/wasmparser_worker/WasmParserWorker.ts
@@ -55,7 +55,7 @@ export function dissambleWASM(

const lines = [];

const offsets = [];

const functionBodyOffsets = [];
- const MAX_LINES = 1000 * 1000;
+ const MAX_LINES = 12 * 1000 * 1000;

let chunkSize: number = 128 * 1024;

let buffer: Uint8Array = new Uint8Array(chunkSize);

let pendingSize = 0;

Then build with:

gn gen out/Default
autoninja -C out/Default

then

cd out/Default/resources/inspector_overlay/
python http.server <some_port>

and then you can start a version of chrome using the modified devtools:

chrome --custom-devtools-frontend=http://localhost:<some_port>/

3.2. Development 109

Pyodide, Release 0.21.1

Using C source maps

Chromium has support for DWARF info which can be very helpful for debugging in certain circumstances.

I haven’t used this very much because it is often not very beneficial. The biggest issue is that I have found no way to
toggle between viewing the C source and the WebAssembly. In particular, if source maps are available, the debugger
gives no way to view the current line in the wasm. What’s worse is that even if it fails to find the source map, it won’t
fall back to displaying the source map. To prevent this, relink the code with -g2.

Typically once I have isolated the interesting line of C code, I need to see what is going on at an instruction-level. This
limitation means that it is generally easier to work directly with instructions. One work around is to load a copy of Pyo-
dide with the source maps next to one without the source maps. This situation is rapidly improving both on Emscripten’s
side and on the browser side. To build Pyodide with DWAREF, you should set DBGFLAGS="-g3 -gseparate-dwarf.

If you are building in the docker image, you will get error 404s when the browser tries to look up the source maps
because the path /src/cpython/. .. doesn’t exist. One dumb solution is sudo 1n -s $(pwd) /src. It might not
be the best idea to link some random directory into root, if you manage to destroy your computer with this please don’t
blame me. In particular, if you later want to remove this link make sure not to remove /srv instead! The correct
solution is to use --source-map-base, but I can’t seem to get it to work.

3.3 Project

The Project section gives additional information about the project’s organization and latest releases.

3.3.1 What is Pyodide?

Pyodide is a Python distribution for the browser and Node.js based on WebAssembly/Emscripten.

Pyodide makes it possible to install and run Python packages in the browser with micropip. Any pure Python package
with a wheel available on PyPI is supported. Many packages with C extensions have also been ported for use with
Pyodide. These include many general-purpose packages such as regex, PyYAML, Ixml and scientific Python packages
including NumPy, pandas, SciPy, Matplotlib, and scikit-learn.

Pyodide comes with a robust Javascript Python foreign function interface so that you can freely mix these two languages
in your code with minimal friction. This includes full support for error handling (throw an error in one language, catch
it in the other), async/await, and much more.

When used inside a browser, Python has full access to the Web APIs.
History

Pyodide was created in 2018 by Michael Droettboom at Mozilla as part of the Iodide project. Iodide is an experimental
web-based notebook environment for literate scientific computing and communication.

110 Chapter 3. Table of contents

https://developer.chrome.com/blog/wasm-debugging-2020/
https://emscripten.org/
https://pyodide.org/en/stable/usage/api/micropip-api.html
https://github.com/mdboom
https://github.com/iodide-project/iodide

Pyodide, Release 0.21.1

Contributing

See the contributing guide for tips on filing issues, making changes, and submitting pull requests. Pyodide is an
independent and community-driven open-source project. The decision-making process is outlined in Governance and
Decision-making.

Citing

If you use Pyodide for a scientific publication, we would appreciate citations. Please find us on Zenodo and use the
citation for the version you are using. You can replace the full author list from there with “The Pyodide development
team” like in the example below:

@software{pyodide_2021,

author = {The Pyodide development team},

title = {pyodide/pyodide},

month = aug,

year = 2021,

publisher = {Zenodo},

version = {0.21.1},

doi = {10.5281/zenodo.5156931},

url = {https://doi.org/10.5281/zenodo.5156931}

Communication

* Blog: blog.pyodide.org

* Mailing list: mail.python.org/mailman3/lists/pyodide.python.org/
* Gitter: gitter.im/pyodide/community

» Twitter: twitter.com/pyodide

 Stack Overflow: stackoverflow.com/questions/tagged/pyodide

Donations

We accept donations to the Pyodide project at opencollective.com/pyodide. All donations are processed by the Open
Source Collective — a nonprofit organization that acts as our fiscal host.

Funds will be mostly spent to organize in-person code sprints and to cover infrastructure costs for distributing packages
built with Pyodide.

License

Pyodide uses the Mozilla Public License Version 2.0.

3.3. Project 111

https://zenodo.org/record/5156931
https://blog.pyodide.org/
https://mail.python.org/mailman3/lists/pyodide.python.org/
https://gitter.im/pyodide/community
https://twitter.com/pyodide
https://stackoverflow.com/questions/tagged/pyodide
https://opencollective.com/pyodide
https://www.oscollective.org/
https://www.oscollective.org/
https://choosealicense.com/licenses/mpl-2.0/

Pyodide, Release 0.21.1

Infrastructure support

We would like to thank,
* Mozilla and CircleCl for Continuous Integration resources
e JsDelivr for providing a CDN for Pyodide packages

* ReadTheDocs for hosting the documentation.

3.3.2 Roadmap

This document lists general directions that core developers are interested to see developed in Pyodide. The fact that an
item is listed here is in no way a promise that it will happen, as resources are limited. Rather, it is an indication that
help is welcomed on this topic.

Reducing download sizes and initialization times

At present a first load of Pyodide requires a 6.4 MB download, and the environment initialization takes 4 to 5 seconds.
Subsequent page loads are faster since assets are cached in the browser. Both of these indicators can likely be improved,
by optimizing compilation parameters, minifying the Python standard library and packages, reducing the number of
exported symbols. To figure out where to devote the effort, we need a better profiling system for the load process.

See issue #646.

Improve performance of Python code in Pyodide

Across benchmarks Pyodide is currently around 3x to 5x slower than native Python.

At the same type, C code compiled to WebAssembly typically runs between near native speed and 2x to 2.5x times
slower (Jangda et al. 2019 PDF). It is therefore very likely that the performance of Python code in Pyodide can be
improved with some focused effort.

In addition, scientific Python code would benefit from packaging a high performance BLAS library such as BLIS.
See issue #1120.

Better support and documentation for loading user Python code

Currently, most of our documentation suggests using pyodide . runPython to run code. This makes code difficult to
maintain, because it won’t work with mypy, black, or other code analysis tools, doesn’t get good syntax highlighting in
editors, etc. It also may lead to passing “arguments” to code via string formatting, missing out on the type conversion
utilities.

Our goal is to develop and document a better workflow for users to develop Python code for use in Pyodide.

See issue #1940.

112 Chapter 3. Table of contents

https://www.mozilla.org/en-US/
https://circleci.com/
https://www.jsdelivr.com/
https://readthedocs.org/
https://github.com/pyodide/pyodide/issues/646
https://github.com/pyodide/pyodide/tree/main/benchmark
https://www.usenix.org/system/files/atc19-jangda.pdf
https://github.com/pyodide/pyodide/issues/1120
https://github.com/pyodide/pyodide/issues/1940

Pyodide, Release 0.21.1

Improvements to package loading system

Currently, Pyodide has two ways of loading packages:
* pyodide.loadPackage for packages built with Pyodide and
e micropip.install for pure Python packages from PyPIL.
The relationship between these tools is currently confusing.

Our goal is to have three ways to load packages: one with no dependency resolution at all, one with static dependency
resolution which is done ahead of time, and one for dynamic dependency resolution. Ideally most applications can use
static dependency resolution and repls can use dynamic dependency resolution.

See issues #2045 and #1100.

Find a better way to compile Fortran

Currently, we use f2¢ to cross compile Fortran to C. This does not work very well because f2¢ only fully supports
Fortran 77 code. LAPACK has used more modern Fortran features since 2008 and Scipy has adopted more recent
Fortran as well. f2c still successfully generates code for all but 6 functions in Scipy + LAPACK, but much of the
generated code is slightly wrong and requires extensive patching. There are still a large number of fatal errors due to
call signature incompatibilities.

If we could use an LLVM-based Fortran compiler as a part of the Emscripten toolchain, most of these problems would
be solved. There are several promising projects heading in that direction including flang and lfortran.

See scipy/scipy#15290.

Better project sustainability

Some of the challenges that Pyodide faces, such as maintaining a collection of build recipes, dependency resolution
from PyPI, etc are already solved in either Python or JavaScript ecosystems. We should therefore strive to better re-use
existing tooling, and seeking synergies with existing initiatives in this space, such as conda-forge.

See issue #795.

Improve support for WebWorkers
WebWorkers are necessary in order to run computational tasks in the browser without hanging the user interface.
Currently, Pyodide can run in a WebWorker, however the user experience and reliability can be improved.

See issue #1504.

Synchronous 10

The majority of existing I/O APIs are synchronous. Unless we can support synchronous IO, much of the existing
Python ecosystem cannot be ported. There are several different approaches to this, we would like to support at least
one method.

See issue #1503.

3.3. Project 113

https://github.com/pyodide/pyodide/issues/2045
https://github.com/pyodide/pyodide/issues/1100
https://github.com/scipy/scipy/issues/15290
https://github.com/pyodide/pyodide/issues/795
https://github.com/pyodide/pyodide/issues/1504
https://github.com/pyodide/pyodide/issues/1503

Pyodide, Release 0.21.1

Write http.client in terms of Web APls

Python packages make an extensive use of packages such as requests to synchronously fetch data. We currently
can’t use such packages since sockets are not available in Pyodide. We could however try to re-implement some stdlib
libraries with Web APIs, potentially making this possible.

Because http.client is a synchronous API, we first need support for synchronous IO.

See issue #140.

3.3.3 Code of Conduct

Conduct

We are committed to providing a friendly, safe and welcoming environment for all, regardless of level of experience,
gender identity and expression, sexual orientation, disability, personal appearance, body size, race, ethnicity, age, reli-
gion, nationality, or other similar characteristic.

Please be kind and courteous. There’s no need to be mean or rude.

Please avoid using usernames that are overtly sexual or otherwise might detract from a friendly, safe, and wel-
coming environment for all.

Respect that people have differences of opinion and that every design or implementation choice carries trade-offs.
There is seldom a single right answer.

We borrow the Recurse Center’s “social rules”: no feigning surprise, no well-actually’s, no backseat driving,
and no subtle -isms.

Please keep unstructured critique to a minimum. If you have solid ideas you want to experiment with, make a
fork and see how it works. All feedback should be constructive in nature. If you need more detailed guidance
around giving feedback, consult Digital Ocean’s Code of Conduct

It is unacceptable to insult, demean, or harass anyone. We interpret the term “harassment” as defined in the
Citizen Code of Conduct; if you are not sure about what harassment entails, please read their definition. In
particular, we don’t tolerate behavior that excludes people in socially marginalized groups.

Private harassment is also unacceptable. No matter who you are, please contact any of the Pyodide core team
members immediately if you are being harassed or made uncomfortable by a community member. Whether you
are a regular contributor or a newcomer, we care about making this community a safe place for you and we’ve
got your back.

Likewise spamming, trolling, flaming, baiting or other attention-stealing behavior is not welcome.

Moderation

These are the policies for upholding our community’s standards of conduct. If you feel that a thread needs moderation,
please contact the Pyodide core team.

1.

Remarks that violate the Pyodide standards of conduct are not allowed. This includes hateful, hurtful, oppressive,
or exclusionary remarks. (Cursing is allowed, but never targeting another community member, and never in a
hateful manner.)

Remarks that moderators find inappropriate are not allowed, even if they do not break a rule explicitly listed in
the code of conduct.

Moderators will first respond to such remarks with a warning.

If the warning is unheeded, the offending community member will be temporarily banned.

114

Chapter 3. Table of contents

https://github.com/pyodide/pyodide/issues/140
https://www.recurse.com/manual#sub-sec-social-rules
https://github.com/digitalocean/engineering-code-of-conduct#giving-and-receiving-feedback
https://github.com/stumpsyn/policies/blob/master/citizen_code_of_conduct.md#4-unacceptable-behavior

Pyodide, Release 0.21.1

10.

11.

If the community member comes back and continues to make trouble, they will be permanently banned.

Moderators may choose at their discretion to un-ban the community member if they offer the offended party a
genuine apology.

If a moderator bans someone and you think it was unjustified, please take it up with that moderator, or with a
different moderator, in private. Complaints about bans in-channel are not allowed.

Moderators are held to a higher standard than other community members. If a moderator creates an inappropriate
situation, they should expect less leeway than others.

In the Pyodide community we strive to go the extra mile to look out for each other. Don’t just aim to be technically
unimpeachable, try to be your best self. In particular, avoid flirting with offensive or sensitive issues, particularly
if they’re off-topic; this all too often leads to unnecessary fights, hurt feelings, and damaged trust; worse, it can
drive people away from the community entirely.

If someone takes issue with something you said or did, resist the urge to be defensive. Just stop doing what it
was they complained about and apologize. Even if you feel you were misinterpreted or unfairly accused, chances
are good there was something you could have communicated better — remember that it’s your responsibility to
make your fellow Pyodide community members comfortable. Everyone wants to get along and we are all here
first and foremost because we want to talk about science and cool technology. You will find that people will be
eager to assume good intent and forgive as long as you earn their trust.

The enforcement policies listed above apply to all official Pyodide venues. If you wish to use this code of conduct
for your own project, consider making a copy with your own moderation policy so as to avoid confusion.

Adapted from the the Rust Code of Conduct, with further reference from Digital Ocean Code of Conduct, the Recurse
Center, the Citizen Code of Conduct, and the Contributor Covenant.

3.3.4 Governance and Decision-making

The purpose of this document is to formalize the governance process used by the Pyodide project, to clarify how
decisions are made and how the various members of our community interact. This document establishes a decision-
making structure that takes into account feedback from all members of the community and strives to find consensus,
while avoiding deadlocks.

Anyone with an interest in the project can join the community, contribute to the project design and participate in the
decision making process. This document describes how to participate and earn merit in the Pyodide community.

Roles And Responsibilities

Contributors

Contributors are community members who contribute in concrete ways to the project. Anyone can become a contribu-
tor, and contributions can take many forms, for instance, answering user questions — not only code — as detailed in How
to Contribute.

3.3. Project 115

https://www.rust-lang.org/en-US/conduct.html
https://github.com/digitalocean/engineering-code-of-conduct#giving-and-receiving-feedback
https://www.recurse.com/code-of-conduct
https://www.recurse.com/code-of-conduct
http://citizencodeofconduct.org/
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

Pyodide, Release 0.21.1

Community members team

The community members team is composed of community members who have permission on Github to label and close
issues. Their work is crucial to improve the communication in the project.

After participating in Pyodide development with pull requests and reviews for a period of time, any contributor may
become a member of the team. The process for adding team members is modeled on the CPython project. Any core
developer is welcome to propose a Pyodide contributor to join the community members team. Other core developers
are then consulted: while it is expected that most acceptances will be unanimous, a two-thirds majority is enough.

Core developers

Core developers are community members who have shown that they are dedicated to the continued development of the
project through ongoing engagement with the community. They have shown they can be trusted to maintain Pyodide
with care. Being a core developer allows contributors to more easily carry on with their project related activities by
giving them direct access to the project’s repository and is represented as being a member of the core team on the
Pyodide GitHub organization. Core developers are expected to review code contributions, can merge approved pull
requests, can cast votes for and against merging a pull-request, and can make decisions about major changes to the API
(all contributors are welcome to participate in the discussion).

New core developers can be nominated by any existing core developers. Once they have been nominated, there will
be a vote by the current core developers. Voting on new core developers is one of the few activities that takes place
on the project’s private communication channels. While it is expected that most votes will be unanimous, a two-thirds
majority of the cast votes is enough. The vote needs to be open for at least one week.

Core developers that have not contributed to the project (commits or GitHub comments) in the past two years will be
asked if they want to become emeritus core developers and recant their commit and voting rights until they become
active again.

Decision Making Process

Decisions about the future of the project are made through discussion with all members of the community. All non-
sensitive project management discussion takes place on the project contributors’ issue tracker and on Github discussion.
Occasionally, sensitive discussion occurs on a private communication channels.

Pyodide uses a “consensus seeking” process for making decisions. The group tries to find a resolution that has no open
objections among core developers. At any point during the discussion, any core-developer can call for a vote, which
will conclude two weeks from the call for the vote. This is what we hereafter may refer to as “the decision making
process”.

Decisions (in addition to adding core developers as above) are made according to the following rules:

¢ Maintenance changes, include for instance improving the wording in the documentation, updating CI or de-
pendencies. Core developers are expected to give “reasonable time” to others to give their opinion on the Pull
Request in case they 're not confident that others would agree. If no further review on the Pull Request is received
within this time, it can be merged. If a review is received, then the consensus rules from the following section
apply.

* Code changes in general, and especially those impacting user facing APIs, as well as more significant docu-
mentation changes, require review and approval by a core developer and no objections raised by any core devel-
oper (lazy consensus). This process happens on the pull-request page.

¢ Changes to the governance model use the same decision process outlined above.

116 Chapter 3. Table of contents

https://devguide.python.org/triaging/#becoming-a-member-of-the-python-triage-team
https://github.com/orgs/Pyodide/teams/core/members
https://github.com/Pyodide/Pyodide/issues
https://github.com/Pyodide/Pyodide/discussions

Pyodide, Release 0.21.1

3.3.5 Change Log
Version 0.21.1

» New packages: the standard library 1zma module #2939

* Enhancement Pyodide now shows more helpful error messages when importing unvendored or removed stdlib
modules fails. #2973

* Enhancement pyodide build now checks that the correct version of the Emscripten compiler is used. #2975,
#2990

* Fix Pyodide works in Safari v14 again. It was broken in v0.21.0 #2994

Version 0.21.0

August 9, 2022

See the release notes for a summary.

Build system

* Enhancement Emscripten was updated to Version 3.1.14 #2775, #2679, #2672

* Fix Fix building on macOS #2360 #2554

* Enhancement Update Typescript target to ES2017 to generate more modern Javascript code. #2471

* Enhancement We now put our built files into the dist directory rather than the build directory. #2387
* Fix The build will error out earlier if cmake or 1ibtool are not installed. #2423

* Enhancement The platform tags of wheels now include the Emscripten version in them. This should help ensure
ABI compatibility if Emscripten wheels are distributed outside of the main Pyodide distribution. #2610

¢ Enhancement The build system now uses the sysconfigdata from the target Python rather than the host Python.
#2516

* Enhancement Pyodide now builds with -sWASM_BIGINT. #2643

* Enhancement Added cross-script key to the meta.yaml spec to allow executing custom logic in the cross
build environment. #2734

Pyodide Module and type conversions

* API Change All functions were moved out of the root pyodide package into various submodules. For backwards
compatibility, they will be available from the root package (raising a FutureWarning) until v0.23.0. #2787,
#2790

* Enhancement loadPyodide no longer uses any global state, so it can be used more than once in the same thread.
This is recommended if a network request causes a loading failure, if there is a fatal error, if you damage the state
of the runtime so badly that it is no longer usable, or for certain testing purposes. It is not recommended for
creating multiple execution environments, for which you should use pyodide.runPython(code, { globals

some_dict}); #2391

* Enhancement pyodide.unpackArchive now accepts any ArrayBufferView or ArrayBuffer as first argu-
ment, rather than only a Uint8Array. #2451

¢ Feature Added pyodide.code.run_js API. #2426

3.3. Project 117

https://github.com/pyodide/pyodide/pull/2939
https://github.com/pyodide/pyodide/pull/2973
https://github.com/pyodide/pyodide/pull/2975
https://github.com/pyodide/pyodide/pull/2990
https://github.com/pyodide/pyodide/pull/2994
https://blog.pyodide.org/posts/0.21-release/
https://github.com/pyodide/pyodide/pull/2775
https://github.com/pyodide/pyodide/pull/2679
https://github.com/pyodide/pyodide/pull/2672
https://github.com/pyodide/pyodide/issues/2360
https://github.com/pyodide/pyodide/pull/2554
https://github.com/pyodide/pyodide/pull/2471
https://github.com/pyodide/pyodide/pull/2387
https://github.com/pyodide/pyodide/pull/2423
https://github.com/pyodide/pyodide/pull/2610
https://github.com/pyodide/pyodide/pull/2516
https://github.com/pyodide/pyodide/pull/2643
https://github.com/pyodide/pyodide/pull/2734
https://github.com/pyodide/pyodide/pull/2787
https://github.com/pyodide/pyodide/pull/2790
https://github.com/pyodide/pyodide/pull/2391
https://github.com/pyodide/pyodide/pull/2451
https://github.com/pyodide/pyodide/pull/2426

Pyodide, Release 0.21.1

Fix BigInt’s between 2*{32%*n - 1} and 2*{32*n} no longer get translated to negative Python ints. #2484
Fix Pyodide now correctly handles JavaScript objects with null constructor. #2520
Fix Fix garbage collection of once_callable #2401

Enhancement Added the js_id attribute to JsProxy to allow using JavaScript object identity as a dictionary
key. #2515

Fix Fixed a bug with toJs when used with recursive structures and the dictConverter argument. #2533

Enhancement Added Python wrappers set_timeout, clear_timeout, set_interval, clear_interval,
add_event_listener and remove_event_listener for the corresponding JavaScript functions. #2456

Fix If a request fails due to CORS, pyfetch now raises an OSError not a JSException. #2598
Enhancement Pyodide now directly exposes the Emscripten PATH and ERRNO_CODES APIs. #2582

Fix The bool operator on a JsProxy now behaves more consistently: it returns False if JavaScript would say
that ! !x is false, or if x is an empty container. Otherwise it returns True. #2803

Fix Fix 1loadPyodide errors for the Windows Node environment. #2888

Enhancement Implemented slice subscripting, +=, and extend for JsProxy of Javascript arrays. #2907

REPL

Enhancement Add a spinner while the REPL is loading #2635
Enhancement Cursor blinking in the REPL can be disabled by setting noblink in URL search params. #2666
Fix Fix a REPL error in printing high-dimensional lists. #2517 #2919

Fix Fix output bug with using input () on online console #2509

micropip and package loading

API Change packages. json which contains the dependency graph for packages was renamed to repodata.
json to avoid confusion with package. json used in JavaScript packages.

Enhancement Added SHA-256 hash of package to entries in repodata. json #2455

Enhancement Integrity of Pyodide packages is now verified before loading them. This is for now limited to
browser environments. #2513

Enhancement micropip supports loading wheels from the Emscripten file system using the emfs: protocol
now. #2767

Enhancement It is now possible to use an alternate repodata. json lockfile by passing the 1ockFileURL option
to IoadPyodide. This is particularly intended to be used with micropip. freeze. #2645

Fix micropip now correctly handles package names that include dashes #2414
Enhancement Allow passing credentials tomicropip.install() #2458

Enhancement micropip.install() now accepts a deps parameter. If set to False, micropip will not install
dependencies of the package. #2433

Fix micropip now correctly compares packages with prerelease version #2532

Enhancement micropip.install() now accepts a pre parameter. If set to True, micropip will include pre-
release and development versions. #2542

118

Chapter 3. Table of contents

https://github.com/pyodide/pyodide/pull/2484
https://github.com/pyodide/pyodide/pull/2520
https://github.com/pyodide/pyodide/pull/2401
https://github.com/pyodide/pyodide/pull/2515
https://github.com/pyodide/pyodide/pull/2533
https://github.com/pyodide/pyodide/pull/2456
https://github.com/pyodide/pyodide/pull/2598
https://github.com/pyodide/pyodide/pull/2582
https://github.com/pyodide/pyodide/pull/2803
https://github.com/pyodide/pyodide/pull/2888
https://github.com/pyodide/pyodide/pull/2907
https://github.com/pyodide/pyodide/pull/2635
https://github.com/pyodide/pyodide/pull/2666
https://github.com/pyodide/pyodide/pull/2517
https://github.com/pyodide/pyodide/pull/2919
https://github.com/pyodide/pyodide/pull/2509
https://github.com/pyodide/pyodide/pull/2455
https://github.com/pyodide/pyodide/pull/2513
https://github.com/pyodide/pyodide/pull/2767
https://github.com/pyodide/pyodide/pull/2645
https://github.com/pyodide/pyodide/pull/2414
https://github.com/pyodide/pyodide/pull/2458
https://github.com/pyodide/pyodide/pull/2433
https://github.com/pyodide/pyodide/pull/2532
https://github.com/pyodide/pyodide/pull/2542

Pyodide, Release 0.21.1

* Enhancement micropip was refactored to improve readability and ease of maintenance. #2561, #2563, #2564,
#2565, #2568

* Enhancement Various error messages were fine tuned and improved. #2562, #2558

* Enhancement micropip was adjusted to keep its state in the wheel .dist-info directories which improves
consistenency with the Python standard library and other tools used to install packages. #2572

* Enhancement micropip can now be used to install Emscripten binary wheels. #2591

* Enhancement Added micropip.freeze to record the current set of loaded packages into a repodata. json
file. #2581

e Fixmicropip.1list now works correctly when there are packages that are installed via pyodide .loadPackage
from a custom URL. #2743

* Fix micropip now skips package versions which do not follow PEP440. #2754

» Fix micropip supports extra markers in packages correctly now. #2584

Packages

* Enhancement Update sqlite version to latest stable release #2477 and #2518

* Enhancement Pillow now supports WEBP image format #2407.

* Enhancement Pillow and opencv-python now support the TIFF image format. #2762

» Pandas is now compiled with -0z, which significantly speeds up loading the library on Chrome #2457

* New packages: opencv-python #2305, ffmpeg #2305, libwebp #2305, hSpy, pkgconfig and libhdf5 #2411, bitar-
ray #2459, gsw #2511, cftime #2504, svgwrite, jsonschema, tskit #2506, xarray #2538, demes, libgsl, newick,
ruamel, msprime #2548, gmpy?2 #2665, xgboost #2537, galpy #2676, shapely, geos #2725, suitesparse, sparseqr
#2685, libtiff #2762, pytest-benchmark #2799, termcolor #2809, sqlite3, libproj, pyproj, certifi #2555, rebound
#2868, reboundx #2909, pyclipper #2886, brotli #2925, python-magic #2941

Miscellaneous

* Fix We now tell packagers (e.g., Webpack) to ignore npm-specific imports when packing files for the browser.
#2468

* Enhancement run_in_pyodide now has support for pytest assertion rewriting and decorators such as pytest.
mark.parametrize and hypothesis. #2510, #2541

* BREAKING CHANGE pyodide_build.testing is removed. run_in_pyodide decorator can now be ac-
cessed through pytest-pyodide package. #2418

List of contributors

Alexey Ignatiev, Andrey Smelter, andrzej, Antonio Cuni, Ben Jeffery, Brian Benjamin Maranville, David Lechner, drag-
oncoder047, echorand (Amit Saha), Filipe, Frank, Gyeongjae Choi, Hanno Rein, haoran1062, Henry Schreiner, Hood
Chatham, Jason Grout, jmdyck, Jo Bovy, John Wason, josephrocca, Kyle Cutler, Lester Fan, Liumeo, lukemarsden,
Mario Gersbach, Matt Toad, Michael Droettboom, Michael Gilbert, Michael Neil, Mu-Tsun Tsai, Nicholas Bollweg,
pysathq, Ricardo Prins, Rob Gries, Roman Yurchak, Ryan May, Ryan Russell, stonebig, Szymswiat, Tobias Megies,
Vic Kumar, Victor, Wei Ji, Will Lachance

3.3. Project 119

https://github.com/pyodide/pyodide/pull/2561
https://github.com/pyodide/pyodide/pull/2563
https://github.com/pyodide/pyodide/pull/2564
https://github.com/pyodide/pyodide/pull/2565
https://github.com/pyodide/pyodide/pull/2568
https://github.com/pyodide/pyodide/pull/2562
https://github.com/pyodide/pyodide/pull/2558
https://github.com/pyodide/pyodide/pull/2572
https://github.com/pyodide/pyodide/pull/2591
https://github.com/pyodide/pyodide/pull/2581
https://github.com/pyodide/pyodide/pull/2743
https://github.com/pyodide/pyodide/pull/2754
https://github.com/pyodide/pyodide/pull/2584
https://github.com/pyodide/pyodide/pull/2477
https://github.com/pyodide/pyodide/pull/2518
https://github.com/pyodide/pyodide/pull/2407
https://github.com/pyodide/pyodide/pull/2762
https://github.com/pyodide/pyodide/pull/2457
https://github.com/pyodide/pyodide/pull/2305
https://github.com/pyodide/pyodide/pull/2305
https://github.com/pyodide/pyodide/pull/2305
https://github.com/pyodide/pyodide/pull/2411
https://github.com/pyodide/pyodide/pull/2459
https://github.com/pyodide/pyodide/pull/2511
https://github.com/pyodide/pyodide/pull/2504
https://github.com/pyodide/pyodide/pull/2506
https://github.com/pyodide/pyodide/pull/2538
https://github.com/pyodide/pyodide/pull/2548
https://github.com/pyodide/pyodide/pull/2665
https://github.com/pyodide/pyodide/pull/2537
https://github.com/pyodide/pyodide/pull/2676
https://github.com/pyodide/pyodide/pull/2725
https://github.com/pyodide/pyodide/pull/2685
https://github.com/pyodide/pyodide/pull/2762
https://github.com/pyodide/pyodide/pull/2799
https://github.com/pyodide/pyodide/pull/2809
https://github.com/pyodide/pyodide/pull/2555
https://github.com/pyodide/pyodide/pull/2868
https://github.com/pyodide/pyodide/pull/2909
https://github.com/pyodide/pyodide/pull/2886
https://github.com/pyodide/pyodide/pull/2925
https://github.com/pyodide/pyodide/pull/2941
https://github.com/pyodide/pyodide/pull/2468
https://github.com/pyodide/pyodide/pull/2510
https://github.com/pyodide/pyodide/pull/2541
https://github.com/pyodide/pytest-pyodide
https://github.com/pyodide/pyodide/pull/2418

Pyodide, Release 0.21.1

Version 0.20.0

See the release notes for a summary.

CPython and stdlib

» Update Pyodide now runs Python 3.10.2. #2225

* Enhancement All ctypes tests pass now except for test_callback_too_many_args (and we have a plan to

fix test_callback_too_many_args upstream). libffi-emscripten now also passes all libffi tests. #2350

Packages

Fix matplotlib now loads multiple fonts correctly #2271

New packages: boost-histogram #2174, cryptography v3.3.2 #2263, the standard library ssl module #2263,
python-solvespace v3.0.7, lazy-object-proxy #2320.

Many more scipy linking errors were fixed, mostly related to the Fortran f2c ABI for string arguments. There
are still some fatal errors in the Scipy test suite, but none seem to be simple linker errors. #2289

Removed pyodide-interrupts. If you were using this for some reason, use setInterruptBuffer instead. #2309

Most included packages were updated to the latest version. See Packages built in Pyodide for a full list.

Type translations

* Fix Python tracebacks now include Javascript frames when Python calls a Javascript function. #2123

* Enhancement Added a default_converter argument to JsProxy. to_py and pyodide. toPy which is used

to process any object that doesn’t have a built-in conversion to Python. Also added a default_converter
argument to PyProxy.toJs and pyodide. ffi.to_js to convert. #2170 and #2208

* Enhancement Async Python functions called from Javascript now have the resulting coroutine automatically

scheduled. For instance, this makes it possible to use an async Python function as a Javascript event handler.
#2319

Javascript package

Enhancement It is no longer necessary to provide indexURL to IoadPyodide. #2292

BREAKING CHANGE The globals argument to runPython and runPythonAsync is now passed as a named
argument. The old usage still works with a deprecation warning. #2300

Enhancement The Javascript package was migrated to Typescript. #2130 and #2133
Fix Fix importing pyodide with ESM syntax in a module type web worker. #2220

Enhancement When Pyodide is loaded as an ES6 module, no global loadPyodide variable is created (instead,
it should be accessed as an attribute on the module). #2249

Fix The type Py2JsResult has been replaced with any which is more accurate. For backwards compatibility,
we still export Py2JsResult as an alias for any. #2277

Fix Pyodide now loads correctly even if requirejs is included. #2283

120

Chapter 3. Table of contents

https://blog.pyodide.org/posts/0.20-release/
https://github.com/pyodide/pyodide/pull/2225
https://github.com/pyodide/pyodide/pull/2350
https://github.com/pyodide/pyodide/pull/2271
https://github.com/pyodide/pyodide/pull/2174
https://github.com/pyodide/pyodide/pull/2263
https://github.com/pyodide/pyodide/pull/2263
https://github.com/pyodide/pyodide/pull/2320
https://github.com/pyodide/pyodide/pull/2289
https://github.com/pyodide/pyodide/pull/2309
https://github.com/pyodide/pyodide/pull/2123
https://github.com/pyodide/pyodide/pull/2170
https://github.com/pyodide/pyodide/pull/2208
https://github.com/pyodide/pyodide/pull/2319
https://github.com/pyodide/pyodide/pull/2292
https://github.com/pyodide/pyodide/pull/2300
https://github.com/pyodide/pyodide/pull/2130
https://github.com/pyodide/pyodide/pull/2133
https://github.com/pyodide/pyodide/pull/2220
https://github.com/pyodide/pyodide/pull/2249
https://github.com/pyodide/pyodide/pull/2277
https://github.com/pyodide/pyodide/pull/2283

Pyodide, Release 0.21.1

* Enhancement Added robust handling for non-Error objects thrown by Javascript code. This mostly should
never happen since well behaved Javascript code ought to throw errors. But it’s better not to completely crash if
it throws something else. #2294

pyodide_build

* Enhancement Pyodide now uses Python wheel files to distribute packages rather than the emscripten
file_packager.py format. #2027

¢ Enhancement Pyodide now uses pypa/build to build packages. We (mostly) use build isolation, so we can
build packages that require conflicting versions of setuptools or alternative build backends. #2272

* Enhancement Most pure Python packages were switched to use the wheels directly from PyPI rather than re-
building them. #2126

¢ Enhancement Added support for C++ exceptions in packages. Now C++ extensions compiled and linked with
-fexceptions can catch C++ exceptions. Furthermore, uncaught C++ exceptions will be formatted in a human-
readable way. #2178

*» BREAKING CHANGE Removed the skip-host key from the meta.yaml format. If needed, install a host copy
of the package with pip instead. #2256

Uncategorized

* Enhancement The interrupt buffer can be used to raise all 64 signals now, not just SIGINT. Write a number
between 1<= signum <= 64 into the interrupt buffer to trigger the corresponding signal. By default everything
but SIGINT will be ignored. Any value written into the interrupt buffer outside of the range from 1 to 64 will be
silently discarded. #2301

* Enhancement Updated to Emscripten 2.0.27. #2295

* BREAKING CHANGE The extractDir argument to unpackArchive is now passed as a named argument.
The old usage still works with a deprecation warning. #2300

* Enhancement Support ANSI escape codes in the Pyodide console. #2345

* Fix pyodide_build can now be installed in non-editable ways. #2351

List of contributors

Boris Feld, Christian Staudt, Gabriel Fougeron, Gyeongjae Choi, Henry Schreiner, Hood Chatham, Jo Bovy,
Karthikeyan Singaravelan, Leo Psidom, Liumeo, Luka Mamukashvili, Madhur Tandon, Paul Korzhyk, Roman Yur-
chak, Seungmin Kim, Thorsten Beier, Tom White, and Will Lachance

Version 0.19.1

February 19, 2022

3.3. Project 121

https://github.com/pyodide/pyodide/pull/2294
https://github.com/pyodide/pyodide/pull/2027
https://github.com/pyodide/pyodide/pull/2272
https://github.com/pyodide/pyodide/pull/2126
https://github.com/pyodide/pyodide/pull/2178
https://github.com/pyodide/pyodide/pull/2256
https://github.com/pyodide/pyodide/pull/2301
https://github.com/pyodide/pyodide/pull/2295
https://github.com/pyodide/pyodide/pull/2300
https://github.com/pyodide/pyodide/pull/2345
https://github.com/pyodide/pyodide/pull/2351

Pyodide, Release 0.21.1

Packages

* New packages: sqlalchemy #2112, pydantic #2117, wrapt #2165
» Update Upgraded packages: pyb2d (0.7.2), #2117

Fix A fatal error in scipy.stats.binom.ppf has been fixed. #2109

* Fix Type signature mismatches in some numpy comparators have been fixed. #2110

Type translations

* Fix The “PyProxy has already been destroyed” error message has been improved with some context information.
#2121

REPL

* Enhancement Pressing TAB in REPL no longer triggers completion when input is whitespace. #2125

List of contributors

Christian Staudt, Gyeongjae Choi, Hood Chatham, Liumeo, Paul Korzhyk, Roman Yurchak, Seungmin Kim, Thorsten
Beier

Version 0.19.0

January 10, 2021

See the release notes for a summary.

Python package

* Enhancement If find_imports is used on code that contains a syntax error, it will return an empty list instead
of raising a SyntaxError. #1819

* Enhancement Added the pyodide.http.pyfetch API which provides a convenience wrapper for the Javascript
fetch API. The API returns a response object with various methods that convert the data into various types while
minimizing the number of times the data is copied. #1865

* Enhancement Added the unpack_archive API to the FetchResponse object which treats the response body
as an archive and uses shutil to unpack it. #1935

* Fix The Pyodide event loop now works correctly with cancelled handles. In particular, asyncio.wait_for now
functions as expected. #2022

122 Chapter 3. Table of contents

https://github.com/pyodide/pyodide/pull/2112
https://github.com/pyodide/pyodide/pull/2117
https://github.com/pyodide/pyodide/pull/2165
https://github.com/pyodide/pyodide/pull/2117
https://github.com/pyodide/pyodide/pull/2109
https://github.com/pyodide/pyodide/pull/2110
https://github.com/pyodide/pyodide/pull/2121
https://github.com/pyodide/pyodide/pull/2125
https://blog.pyodide.org/posts/0.19-release/
https://github.com/pyodide/pyodide/pull/1819
https://github.com/pyodide/pyodide/pull/1865
https://github.com/pyodide/pyodide/pull/1935
https://github.com/pyodide/pyodide/pull/2022

Pyodide, Release 0.21.1

JavaScript package

¢ Fix IoadPyodide no longer fails in the presence of a user-defined global named process. #1849
* Fix Various webpack buildtime and runtime compatibility issues were fixed. #1900

* Enhancement Added the pyodide. pyimport API to import a Python module and return it as a PyProxy. Warn-
ing: this is different from the original pyimport API which was removed in this version. #1944

* Enhancement Added the pyodide.unpackArchive API which unpacks an archive represented as an Array-
Buffer into the working directory. This is intended as a way to install packages from a local application. #1944

* API Change IoadPyodide now accepts a homedir parameter which sets home directory of Pyodide virtual file
system. #1936

* BREAKING CHANGE The default working directory(home directory) inside the Pyodide virtual file system has
been changed from / to /home/pyodide. To get the previous behavior, you can

— call os.chdir("/") in Python to change working directory or

— call IoadPyodide with the homedir="/" argument #1936

Python / JavaScript type conversions

* BREAKING CHANGE Updated the calling convention when a JavaScript function is called from Python to
improve memory management of PyProxies. PyProxy arguments and return values are automatically destroyed
when the function is finished. #1573

¢ Enhancement Added JsProxy.to_string, JsProxy.to_bytes, and JsProxy. to_memoryview to allow for
conversion of TypedArray to standard Python types without unneeded copies. #1864

* Enhancement Added JsProxy.to_file and JsProxy.from_file to allow reading and writing Javascript
buffers to files as a byte stream without unneeded copies. #1864

* Fix It is now possible to destroy a borrowed attribute PyProxy of a PyProxy (as introduced by #1636) before
destroying the root PyProxy. #1854

e FixIf __iter__() raises an error, it is now handled correctly by the PyProxy [Symbol.iterator ()] method.
#1871

* Fix Borrowed attribute PyProxys are no longer destroyed when the root PyProxy is garbage collected (because
it was leaked). Doing so has no benefit to nonleaky code and turns some leaky code into broken code (see #1855
for an example). #1870

* Fix Improved the way that pyodide.globals.get("builtin_name") works. Before we used __main__.
__dict__.update(builtins.__dict__) which led to several undesirable effects such as __name__ being
equal to "builtins". Now we use a proxy wrapper to replace pyodide.globals.get with a function that
looks up the name on builtins if lookup on globals fails. #1905

* Enhancement Coroutines have their memory managed in a more convenient way. In particular, now it is only
necessary to either await the coroutine or call one of .then, .except or .finally to prevent a leak. It is no
longer necessary to manually destroy the coroutine. Example: before:

async function runPythonAsync(code, globals) {
let coroutine = Module.pyodide_py.eval_code_async(code, globals);

try {
return await coroutine;
} finally {

coroutine.destroy();

(continues on next page)

3.3. Project 123

https://github.com/pyodide/pyodide/pull/1849
https://github.com/pyodide/pyodide/pull/1900
https://github.com/pyodide/pyodide/pull/1944
https://github.com/pyodide/pyodide/pull/1944
https://github.com/pyodide/pyodide/pull/1936
https://github.com/pyodide/pyodide/pull/1936
https://github.com/pyodide/pyodide/pull/1573
https://github.com/pyodide/pyodide/pull/1864
https://github.com/pyodide/pyodide/pull/1864
https://github.com/pyodide/pyodide/pull/1636
https://github.com/pyodide/pyodide/pull/1854
https://github.com/pyodide/pyodide/pull/1871
https://github.com/pyodide/pyodide/issues/1855
https://github.com/pyodide/pyodide/pull/1870
https://github.com/pyodide/pyodide/pull/1905

Pyodide, Release 0.21.1

(continued from previous page)

After:

async function runPythonAsync(code, globals) {
return await Module.pyodide_py.eval_code_async(code, globals);

}

#2030

pyodide-build

* API Change By default only a minimal set of packages is built. To build all packages set
PYODIDE_PACKAGES="*" In addition, make minimal was removed, since it is now equivalent to make without
extra arguments. #1801

* Enhancement It is now possible to use pyodide-build buildall and pyodide-build buildpkg directly.
#2063

* Enhancement Added a --force-rebuild flag to buildall and buildpkg which rebuilds the package even if
it looks like it doesn’t need to be rebuilt. Added a --continue flag which keeps the same source tree for the
package and can continue from the middle of a build. #2069

* Enhancement Changes to environment variables in the build script are now seen in the compile and post build
scripts. #1706

* Fix Fix usability issues with pyodide-build mkpkg CLI. #1828
* Enhancement Better support for ccache when building Pyodide #1805

e Fix Fix compile error wasm-1ld: error: wunknown argument: --sort-common and wasm-1d:
error: unknown argument: --as-needed in ArchLinux. #1965

micropip

* Fix micropip now raises an error when installing a non-pure python wheel directly from a url. #1859

* Enhancement micropip.install() now accepts a keep_going parameter. If set to True, micropip reports
all identifiable dependencies that don’t have pure Python wheels, instead of failing after processing the first one.
#1976

¢ Enhancement Added a new API micropip.list() which returns the list of installed packages by micropip.
#2012

124 Chapter 3. Table of contents

https://github.com/pyodide/pyodide/pull/2030
https://github.com/pyodide/pyodide/pull/1801
https://github.com/pyodide/pyodide/pull/2063
https://github.com/pyodide/pyodide/pull/2069
https://github.com/pyodide/pyodide/pull/1706
https://github.com/pyodide/pyodide/pull/1828
https://github.com/pyodide/pyodide/pull/1805
https://github.com/pyodide/pyodide/pull/1965
https://github.com/pyodide/pyodide/pull/1859
https://github.com/pyodide/pyodide/pull/1976
https://github.com/pyodide/pyodide/pull/2012

Pyodide, Release 0.21.1

Packages

* Enhancement Unit tests are now unvendored from Python packages and included in a separate package <package
name>-tests. This results in a 20% size reduction on average for packages that vendor tests (e.g. numpy, pandas,
scipy). #1832

» Update Upgraded SciPy to 1.7.3. There are known issues with some SciPy components, the current status of the
scipy test suite is here #2065

¢ Fix The built-in pwd module of Python, which provides a Unix specific feature, is now unvendored. #1883
* Fix pillow and imageio now correctly encode/decode grayscale and black-and-white JPEG images. #2028
* Fix The numpy fft module now works correctly. #2028

* New packages: logbook #1920, pyb2d #1968, and threadpoolctl (a dependency of scikit-learn) #2065

» Upgraded packages: numpy (1.21.4) #1934, scikit-learn (1.0.2) #2065, scikit-image (0.19.1) #2005, msgpack
(1.0.3) #2071, astropy (5.0.3) #2086, statsmodels (0.13.1) #2073, pillow (9.0.0) #2085. This list is not exhaustive,
refer to packages. json for the full list.

Uncategorized

* Enhancement PyErr_CheckSignals now works with the keyboard interrupt system so that cooperative C ex-
tensions can be interrupted. Also, added the pyodide. checkInterrupt function so Javascript code can opt to
be interrupted. #1294

* Fix The _ variable is now set by the Pyodide repl just like it is set in the native Python repl. #1904

* Enhancement pyodide-env and pyodide Docker images are now available from both the Docker Hub and from
the Github Package registry. #1995

* Fix The console now correctly handles it when an object’s __repr__ function raises an exception. #2021

* Enhancement Removed the -s EMULATE_FUNCTION_POINTER_CASTS flag, yielding large benefits in speed,
stack usage, and code size. #2019

List of contributors

Alexey Ignatiev, Alex Hall, Bart Broere, Cyrille Bogaert, etienne, Grimmer, Grimmer Kang, Gyeongjae Choi, Hao
Zhang, Hood Chatham, Ian Clester, Jan Max Meyer, LeoPsidom, Liumeo, Michael Christensen, Owen Ou, Roman
Yurchak, Seungmin Kim, Sylvain, Thorsten Beier, Wei Ouyang, Will Lachance

Version 0.18.1

September 16, 2021

3.3. Project 125

https://github.com/pyodide/pyodide/pull/1832
https://github.com/pyodide/pyodide/pull/2065#issuecomment-1004243045
https://github.com/pyodide/pyodide/pull/2065
https://github.com/pyodide/pyodide/pull/1883
https://github.com/pyodide/pyodide/pull/2028
https://github.com/pyodide/pyodide/pull/2028
https://github.com/pyodide/pyodide/pull/1920
https://github.com/pyodide/pyodide/pull/1968
https://github.com/pyodide/pyodide/pull/2065
https://github.com/pyodide/pyodide/pull/1934
https://github.com/pyodide/pyodide/pull/2065
https://github.com/pyodide/pyodide/pull/2005
https://github.com/pyodide/pyodide/pull/2071
https://github.com/pyodide/pyodide/pull/2086
https://github.com/pyodide/pyodide/pull/2073
https://github.com/pyodide/pyodide/pull/2085
https://github.com/pyodide/pyodide/pull/1294
https://github.com/pyodide/pyodide/pull/1904
https://hub.docker.com/repository/docker/pyodide/pyodide-env
https://github.com/orgs/pyodide/packages
https://github.com/pyodide/pyodide/pull/1995
https://github.com/pyodide/pyodide/pull/2021
https://github.com/pyodide/pyodide/pull/2019

Pyodide, Release 0.21.1

Console

Fix Ctrl+C handling in console now works correctly with multiline input. New behavior more closely approxi-
mates the behavior of the native Python console. #1790

» Fix Fix the repr of Python objects (including lists and dicts) in console #1780
* Fix The “long output truncated” message now appears on a separate line as intended. #1814

¢ Fix The streams that are used to redirect stdin and stdout in the console now define isatty to return True. This
fixes pytest. #1822

Python package

* Fix Avoid circular references when runsource raises SyntaxError #1758

JavaScript package

 Fix The pyodide. setInterruptBuffer command is now publicly exposed again, as it was in v0.17.0. #1797

Python / JavaScript type conversions

* Fix Conversion of very large strings from JavaScript to Python works again. #1806

« Fix Fixed a use after free bug in the error handling code. #1816

Packages

* Fix pillow now correctly encodes/decodes RGB JPEG image format. #1818

Micellaneous

* Fix Patched emscripten to make the system calls to duplicate file descriptors closer to posix-compliant. In par-
ticular, this fixes the use of dup on pipes and temporary files, as needed by pytest. #1823

Version 0.18.0

August 3rd, 2021

General

» Update Pyodide now runs Python 3.9.5. #1637
* Enhancement Pyodide can experimentally be used in Node.js #1689

¢ Enhancement Pyodide now directly exposes the Emscripten filesystem API, allowing for direct manipulation of
the in-memory filesystem #1692

* Enhancement Pyodide’s support of emscripten file systems is expanded from the default MEMFS to include IDBFS,
NODEFS, PROXYFS, and WORKERFS, allowing for custom persistence strategies depending on execution environ-
ment #1596

126 Chapter 3. Table of contents

https://github.com/pyodide/pyodide/pull/1790
https://github.com/pyodide/pyodide/pull/1780
https://github.com/pyodide/pyodide/pull/1814
https://github.com/pyodide/pyodide/pull/1822
https://github.com/pyodide/pyodide/pull/1758
https://github.com/pyodide/pyodide/pull/1797
https://github.com/pyodide/pyodide/pull/1806
https://github.com/pyodide/pyodide/pull/1816
https://github.com/pyodide/pyodide/pull/1818
https://github.com/pyodide/pyodide/pull/1823
https://github.com/pyodide/pyodide/pull/1637
https://github.com/pyodide/pyodide/pull/1689
https://emscripten.org/docs/api_reference/Filesystem-API.html
https://github.com/pyodide/pyodide/pull/1692
https://emscripten.org/docs/api_reference/Filesystem-API.html#file-systems
https://github.com/pyodide/pyodide/pull/1596

Pyodide, Release 0.21.1

* API Change The packages. json schema for Pyodide was redesigned for better compatibility with conda. #1700

* API Change run_docker no longer binds any port to the docker image by default. #1750

Standard library

* API Change The following standard library modules are now available as standalone packages
— distlib

They are loaded by default in IoadPyodide, however this behavior can be disabled with the fullStdLib pa-
rameter set to false. All optional stdlib modules can then be loaded as needed with pyodide. loadPackage.
#1543

* Enhancement The standard library module audioop is now included, making the wave, sndhdr, aifc, and
sunau modules usable. #1623

* Enhancement Added support for ctypes. #1656

JavaScript package

* Enhancement The Pyodide JavaScript package is released to npm under npmjs.com/package/pyodide #1762

* API Change loadPyodide no longer automatically stores the API into a global variable called pyodide. To get
old behavior, say globalThis.pyodide = await loadPyodide({...}). #1597

* Enhancement IoadPyodide now accepts callback functions for stdin, stdout and stderr #1728

* Enhancement Pyodide now ships with first party typescript types for the entire JavaScript API (though no typings
are available for PyProxy fields). #1601

e Enhancement It is now possible to import Comlink objects into Pyodide after using pyodide.
registerComlink #1642

e Enhancement If a Python error occurs in a reentrant runPython call, the error will be propagated into
the outer runPython context as the original error type. This is particularly important if the error is a
KeyboardInterrupt. #1447

Python package

¢ Enhancement Added a new CodeRunner API for finer control than eval_code and eval_code_async. De-
signed with the needs of REPL implementations in mind. #1563

¢ Enhancement Added Console class closely based on the Python standard library code.InteractiveConsole
but with support for top level await and stream redirection. Also added the subclass PyodideConsole which
automatically uses pyodide. loadPackagesFromImports on the code before running it. #1125, #1155, #1635

» Fix eval_code_async no longer automatically awaits a returned coroutine or attempts to await a returned gen-
erator object (which triggered an error). #1563

3.3. Project 127

https://github.com/pyodide/pyodide/pull/1700
https://github.com/pyodide/pyodide/pull/1750
https://github.com/pyodide/pyodide/pull/1543
https://github.com/pyodide/pyodide/pull/1623
https://github.com/pyodide/pyodide/pull/1656
https://www.npmjs.com/package/pyodide
https://github.com/pyodide/pyodide/pull/1762
https://github.com/pyodide/pyodide/pull/1597
https://github.com/pyodide/pyodide/pull/1728
https://github.com/pyodide/pyodide/pull/1601
https://github.com/pyodide/pyodide/pull/1642
https://github.com/pyodide/pyodide/pull/1447
https://github.com/pyodide/pyodide/pull/1563
https://github.com/pyodide/pyodide/pull/1125
https://github.com/pyodide/pyodide/pull/1155
https://github.com/pyodide/pyodide/pull/1635
https://github.com/pyodide/pyodide/pull/1563

Pyodide, Release 0.21.1

Python / JavaScript type conversions

API Change pyodide.runPythonAsync no longer automatically calls pyodide.
loadPackagesFromImports. #1538.

Enhancement Added the PyProxy.callKwargs method to allow using Python functions with keyword argu-
ments from JavaScript. #1539

Enhancement Added the PyProxy. copy method. #1549 #1630

API Change Updated the method resolution order on PyProxy. Performing a lookup on a PyProxy will prefer
to pick a method from the PyProxy api, if no such method is found, it will use getattr on the proxied object.
Prefixing a name with $ forces getattr. For instance, PyProxy. destroy now always refers to the method that
destroys the proxy, whereas PyProxy . $destroy refers to an attribute or method called destroy on the proxied
object. #1604

API Change It is now possible to use Symbol keys with PyProxies. These Symbol keys put markers on the
PyProxy that can be used by external code. They will not currently be copied by PyProxy. copy. #1696

Enhancement Memory management of PyProxy fields has been changed so that fields looked up on a PyProxy
are “borrowed” and have their lifetime attached to the base PyProxy. This is intended to allow for more idiomatic
usage. (See #1617.) #1636

API Change The depth argument to toJs is now passed as an option, so toJs(n) in v0.17 changed to
toJs({depth : n}). Similarly, pyodide.toPy now takes depth as a named argument. Also to_js and
to_py only take depth as a keyword argument. #1721

API Change PyProxy.toJs and to_js now take an option pyproxies, if a JavaScript Array is passed for
this, then any proxies created during conversion will be placed into this array. This allows easy cleanup later.
The create_pyproxies option can be used to disable creation of pyproxies during conversion (instead a
ConversionError is raised). #1726

API Change toJs and to_js now take an option dict_converter which will be called on a JavaScript iterable
of two-element Arrays as the final step of converting dictionaries. For instance, pass Object. fromEntries to
convert to an object or Array . from to convert to an array of pairs. #1742

pyodide-build

* API Change pyodide-build is now an installable Python package, with an identically named CLI entrypoint that

replaces bin/pyodide which is removed #1566

micropip

* Fix micropip now correctly handles packages that have mixed case names. (See #1614). #1615

» Enhancement micropip now resolves dependencies correctly for old versions of packages (it used to always use

the dependencies from the most recent version, see #1619 and #1745). micropip also will resolve dependencies
for wheels loaded from custom urls. #1753

128

Chapter 3. Table of contents

https://github.com/pyodide/pyodide/pull/1538
https://github.com/pyodide/pyodide/pull/1539
https://github.com/pyodide/pyodide/pull/1549
https://github.com/pyodide/pyodide/pull/1630
https://github.com/pyodide/pyodide/pull/1604
https://github.com/pyodide/pyodide/pull/1696
https://github.com/pyodide/pyodide/issues/1617
https://github.com/pyodide/pyodide/pull/1636
https://github.com/pyodide/pyodide/pull/1721
https://github.com/pyodide/pyodide/pull/1726
https://github.com/pyodide/pyodide/pull/1742
https://github.com/pyodide/pyodide/pull/1566
https://github.com/pyodide/pyodide/issues/1614
https://github.com/pyodide/pyodide/pull/1615
https://github.com/pyodide/pyodide/issues/1619
https://github.com/pyodide/pyodide/issues/1745
https://github.com/pyodide/pyodide/pull/1753

Pyodide, Release 0.21.1

Packages

* Enhancement matplotlib now comes with a new renderer based on the html5 canvas element. #1579 It is optional
and the current default backend is still the agg backend compiled to wasm.

* Enhancement Updated a number of packages included in Pyodide.

List of contributors

Albertas Gimbutas, Andreas Klostermann, Arfy Slowy, daoxian, Devin Neal, fuyutarow, Grimmer, Guido Zuidhof,
Gyeongjae Choi, Hood Chatham, Ian Clester, Itay Dafna, Jeremy Tuloup, jmsmdy, LinasNas, Madhur Tandon, Michael
Christensen, Nicholas Bollweg, Ondfej Stan€k, Paul m. p. P, Piet Brommel, Roman Yurchak, stefnotch, Syrus Akbary,
Teon L Brooks, Waldir

Version 0.17.0

April 21, 2021

See the 0-17-0-release-notes for more information.

Improvements to package loading and dynamic linking

* Enhancement Uses the emscripten preload plugin system to preload .so files in packages

* Enhancement Support for shared library packages. This is used for CLAPACK which makes scipy a lot smaller.
#1236

* Fix Pyodide and included packages can now be used with Safari v14+. Safari v13 has also been observed to work
on some (but not all) devices.

Python / JS type conversions

Feature A JsProxy of a JavaScript Promise or other awaitable object is now a Python awaitable. #880

API Change Instead of automatically converting Python lists and dicts into JavaScript, they are now wrapped in
PyProxy. Added a new PyProxy. toJs API to request the conversion behavior that used to be implicit. #1167

API Change Added JsProxy.to_py API to convert a JavaScript object to Python. #1244

Feature Flexible jsimports: it now possible to add custom Python “packages” backed by JavaScript code, like the
js package. The js package is now implemented using this system. #1146

Feature A PyProxy of a Python coroutine or awaitable is now an awaitable JavaScript object. Awaiting a corou-
tine will schedule it to run on the Python event loop using asyncio.ensure_future. #1170

Enhancement Made PyProxy of an iterable Python object an iterable Js object: defined the [Symbol.iterator]
method, can be used like for(let x of proxy). Made a PyProxy of a Python iterator an iterator: proxy.
next () is translated to next (it). Made a PyProxy of a Python generator into a JavaScript generator: proxy.
next(val) is translated to gen.send(val). #1180

* API Change Updated PyProxy so that if the wrapped Python object supports __getitem__ access, then the
wrapper has get, set, has, and delete methods which do obj[key], obj[key] = val, key in obj and
del obj[key] respectively. #1175

3.3. Project 129

https://github.com/pyodide/pyodide/pull/1579
https://github.com/pyodide/pyodide/pull/1236
https://github.com/pyodide/pyodide/pull/880
https://github.com/pyodide/pyodide/pull/1167
https://github.com/pyodide/pyodide/pull/1244
https://github.com/pyodide/pyodide/pull/1146
https://github.com/pyodide/pyodide/pull/1170
https://github.com/pyodide/pyodide/pull/1180
https://github.com/pyodide/pyodide/pull/1175

Pyodide, Release 0.21.1

API Change The pyodide . pyimport function is deprecated in favor of using pyodide.globals.get ('key").
#1367

API Change Added PyProxy.getBuffer API to allow direct access to Python buffers as JavaScript TypedAr-
rays. #1215

API Change The innermost level of a buffer converted to JavaScript used to be a TypedArray if the buffer was
contiguous and otherwise an Array. Now the innermost level will be a TypedArray unless the buffer format code

[t

is a ‘?” in which case it will be an Array of booleans, or if the format code is a “s” in which case the innermost
level will be converted to a string. #1376

Enhancement JavaScript BigInts are converted into Python int and Python ints larger than 2”53 are converted
into BigInt. #1407

API Change Added pyodide. isPyProxy to test if an object is a PyProxy. #1456

Enhancement PyProxy and PyBuffer objects are now garbage collected if the browser supports
FinalizationRegistry. #1306

Enhancement Automatic conversion of JavaScript functions to CPython calling conventions. #1051, #1080

Enhancement Automatic detection of fatal errors. In this case Pyodide will produce both a JavaScript and a
Python stack trace with explicit instruction to open a bug report. pr{1151}, pr{1390}, pr{1478}.

Enhancement Systematic memory leak detection in the test suite and a large number of fixed to memory leaks.
pr{1340}

Fix getattr and dir on JsProxy now report consistent results and include all names defined on the Python dictionary
backing JsProxy. #1017

Fix JsProxy.__bool__ now produces more consistent results: both bool(window) and
bool(zero-arg-callback) were False but now are True. Conversely, bool(empty_js_set) and
bool (empty_js_map) were True but now are False. #1061

Fix When calling a JavaScript function from Python without keyword arguments, Pyodide no longer passes a
PyProxy-wrapped NULL pointer as the last argument. #1033

Fix JsBoundMethod is now a subclass of JsProxy, which fixes nested attribute access and various other strange
bugs. #1124

Fix JavaScript functions imported like from js import fetch no longer trigger “invalid invocation” errors
(issue #461) and js.fetch("some_url") also works now (issue #768). #1126

Fix JavaScript bound method calls now work correctly with keyword arguments. #1138

Fix JavaScript constructor calls now work correctly with keyword arguments. #1433

pyodide-py package

* Feature Added a Python event loop to support asyncio by scheduling coroutines to run as jobs on the browser

event loop. This event loop is available by default and automatically enabled by any relevant asyncio API, so for
instance asyncio.ensure_future works without any configuration. #1158

¢ API Change Removed as_nested_list API in favor of JsProxy.to_py. #1345

130

Chapter 3. Table of contents

https://github.com/pyodide/pyodide/pull/1367
https://github.com/pyodide/pyodide/pull/1215
https://github.com/pyodide/pyodide/pull/1376
https://github.com/pyodide/pyodide/pull/1407
https://github.com/pyodide/pyodide/pull/1456
https://github.com/pyodide/pyodide/pull/1306
https://github.com/pyodide/pyodide/pull/1051
https://github.com/pyodide/pyodide/pull/1080
https://github.com/pyodide/pyodide/pull/1017
https://github.com/pyodide/pyodide/pull/1061
https://github.com/pyodide/pyodide/pull/1033
https://github.com/pyodide/pyodide/pull/1124
https://github.com/pyodide/pyodide/issues/461
https://github.com/pyodide/pyodide/issues/768
https://github.com/pyodide/pyodide/pull/1126
https://github.com/pyodide/pyodide/pull/1138
https://github.com/pyodide/pyodide/pull/1433
https://github.com/pyodide/pyodide/pull/1158
https://github.com/pyodide/pyodide/pull/1345

Pyodide, Release 0.21.1

pyodide-js

API Change Removed iodide-specific code in pyodide. js. This breaks compatibility with iodide. #878, #981
API Change Removed the pyodide.autocomplete API, use Jedi directly instead. #1066
API Change Removed pyodide.repr APIL #1067

Fix If messageCallback and errorCallback are supplied to pyodide.loadPackage, pyodide.
runPythonAsync and pyodide.loadPackagesFromImport, then the messages are no longer automatically
logged to the console.

Feature runPythonAsync now runs the code with eval_code_async. In particular, it is possible to use top-
level await inside of runPythonAsync.

eval_code now accepts separate globals and locals parameters. #1083

Added the pyodide.setInterruptBuffer API This can be used to set a SharedArrayBuffer to be the
keyboard interrupt buffer. If Pyodide is running on a webworker, the main thread can signal to the webworker
that it should raise a KeyboardInterrupt by writing to the interrupt buffer. #1148 and #1173

Changed the loading method: added an async function loadPyodide to load Pyodide to use instead of
languagePluginURL and languagePluginLoader. The change is currently backwards compatible, but the
old approach is deprecated. #1363

runPythonAsync now accepts globals parameter. #1914

micropip

Feature micropip now supports installing wheels from relative URLs. #872
API Change micropip.install now returns a Python Future instead of a JavaScript Promise. #1324
Fix micropip.install now interacts correctly with pyodide.loadPackage. #1457

Fix micropip.install now handles version constraints correctly even if there is a version of the package
available from the Pyodide indexURL.

Build system

Enhancement Updated to latest emscripten 2.0.13 with the upstream LLVM backend #1102

API Change Use upstream file_packager.py, and stop checking package abi versions. The
PYODIDE_PACKAGE_ABI environment variable is no longer used, but is still set as some packages use it to detect
whether it is being built for Pyodide. This usage is deprecated, and a new environment variable PYODIDE is
introduced for this purpose.

As part of the change, Module.checkABI is no longer present. #991

uglifyjs and lessc no longer need to be installed in the system during build #878.
Enhancement Reduce the size of the core Pyodide package #987.

Enhancement Optionally to disable docker port binding #1423.

Enhancement Run arbitrary command in docker #1424

Docker images for Pyodide are now accessible at pyodide/pyodide-env and pyodide/pyodide.

Enhancement Option to run docker in non-interactive mode #1641

3.3.

Project 131

https://github.com/pyodide/pyodide/pull/878
https://github.com/pyodide/pyodide/pull/981
https://github.com/pyodide/pyodide/pull/1066
https://github.com/pyodide/pyodide/pull/1067
https://github.com/pyodide/pyodide/pull/1083
https://github.com/pyodide/pyodide/pull/1148
https://github.com/pyodide/pyodide/pull/1173
https://github.com/pyodide/pyodide/pull/1363
https://github.com/pyodide/pyodide/pull/1914
https://github.com/pyodide/pyodide/pull/872
https://github.com/pyodide/pyodide/pull/1324
https://github.com/pyodide/pyodide/pull/1457
https://github.com/pyodide/pyodide/pull/1102
https://github.com/pyodide/pyodide/pull/991
https://github.com/pyodide/pyodide/pull/878
https://github.com/pyodide/pyodide/pull/987
https://github.com/pyodide/pyodide/pull/1423
https://github.com/pyodide/pyodide/pull/1424
https://hub.docker.com/repository/docker/pyodide/pyodide-env
https://hub.docker.com/repository/docker/pyodide/pyodide
https://github.com/pyodide/pyodide/pull/1641

Pyodide, Release 0.21.1

REPL

¢ Fix In console.html: sync behavior, full stdout/stderr support, clean namespace, bigger font, correct result rep-
resentation, clean traceback #1125 and #1141

 Fix Switched from Jedi to rlcompleter for completion in pyodide.console.InteractiveConsole and so in
console.html. This fixes some completion issues (see #821 and #1160)

* Enhancement Support top-level await in the console #1459

Packages

* six, jedi and parso are no longer vendored in the main Pyodide package, and need to be loaded explicitly #1010,
#987.

e Updated packages #1021, #1338, #1460.
* Added Plotly version 4.14.3 and retrying dependency #1419

List of contributors

(in alphabetic order)

Aditya Shankar, casatir, Dexter Chua, dmondev, Frederik Braun, Hood Chatham, Jan Max Meyer, Jeremy Tuloup,
joemarshall, leafjolt, Michael Greminger, Mireille Raad, Ondfej Stan¢€k, Paul m. p. P, rdb, Roman Yurchak, Rudolfs

Version 0.16.1

December 25, 2020
Note: due to a CI deployment issue the 0.16.0 release was skipped and replaced by 0.16.1 with identical contents.

* Pyodide files are distributed by JsDelivr, https://cdn. jsdelivr.net/pyodide/v0.16.1/full /pyodide.
js The previous CDN pyodide-cdn2.iodide. io still works and there are no plans for deprecating it. However
please use JsDelivr as a more sustainable solution, including for earlier Pyodide versions.

Python and the standard library

* Pyodide includes CPython 3.8.2 #712

* ENH Patches for the threading module were removed in all packages. Importing the module, and a subset of
functionality (e.g. locks) works, while starting a new thread will produce an exception, as expected. #796. See
#237 for the current status of the threading support.

* ENH The multiprocessing module is now included, and will not fail at import, thus avoiding the necessity to patch
included packages. Starting a new process will produce an exception due to the limitation of the WebAssembly
VM with the following message: Resource temporarily unavailable #796.

132 Chapter 3. Table of contents

https://github.com/pyodide/pyodide/pull/1125
https://github.com/pyodide/pyodide/pull/1141
https://github.com/pyodide/pyodide/issues/821
https://github.com/pyodide/pyodide/issues/1160
https://github.com/pyodide/pyodide/pull/1459
https://github.com/pyodide/pyodide/pull/1010
https://github.com/pyodide/pyodide/pull/987
https://github.com/pyodide/pyodide/pull/1021
https://github.com/pyodide/pyodide/pull/1338
https://github.com/pyodide/pyodide/pull/1460
https://github.com/pyodide/pyodide/pull/1419
https://www.jsdelivr.com/
https://github.com/pyodide/pyodide/pull/712
https://github.com/pyodide/pyodide/pull/796
https://github.com/pyodide/pyodide/issues/237
https://github.com/pyodide/pyodide/pull/796

Pyodide, Release 0.21.1

Python / JS type conversions

e FIX Only call Py_INCREF () once when proxied by PyProxy #708

* JavaScript exceptions can now be raised and caught in Python. They are wrapped in pyodide.JsException. #891

pyodide-py package and micropip

* The pyodide.py file was transformed to a pyodide-py package. The imports remain the same so this change is
transparent to the users #909.

* FIX Get last version from PyPI when installing a module via micropip #846.
 Suppress REPL results returned by pyodide.eval_code by adding a semicolon #876.

* Enable monkey patching of eval_code and find_imports to customize behavior of runPython and
runPythonAsync #941.

Build system

» Updated docker image to Debian buster, resulting in smaller images. #815
* Pre-built docker images are now available as iodide-project/pyodide #787

* Host Python is no longer compiled, reducing compilation time. This also implies that Python 3.8 is now required
to build Pyodide. It can for instance be installed with conda. #830

» FIX Infer package tarball directory from source URL #687

» Updated to emscripten 1.38.44 and binaryen v86 (see related commits)

» Updated default --1dflags argument to pyodide_build scripts to equal what Pyodide actually uses. #817
* Replace C 1z4 implementation with the (upstream) JavaScript implementation. #851

* Pyodide deployment URL can now be specified with the PYODIDE_BASE_URL environment variable during build.
The pyodide_dev. js is no longer distributed. To get an equivalent behavior with pyodide. js, set

window.languagePluginUrl = "./";

before loading it. #855
* Build runtime C libraries (e.g. libxml) via package build system with correct dependency resolution #927

* Pyodide can now be built in a conda virtual environment #835

Other improvements

* Modify MEMEFS timestamp handling to support better caching. This in particular allows to import newly created
Python modules without invalidating import caches #893

3.3. Project 133

https://github.com/pyodide/pyodide/pull/708
https://github.com/pyodide/pyodide/pull/891
https://github.com/pyodide/pyodide/pull/909
https://github.com/pyodide/pyodide/pull/846
https://github.com/pyodide/pyodide/pull/876
https://github.com/pyodide/pyodide/pull/941
https://github.com/pyodide/pyodide/pull/815
https://hub.docker.com/r/iodide/pyodide
https://github.com/pyodide/pyodide/pull/787
https://github.com/pyodide/pyodide/pull/830
https://github.com/pyodide/pyodide/pull/687
https://github.com/pyodide/pyodide/search?q=emscripten&type=commits
https://github.com/pyodide/pyodide/pull/817
https://github.com/pyodide/pyodide/pull/851
https://github.com/pyodide/pyodide/pull/855
https://github.com/pyodide/pyodide/pull/927
https://github.com/pyodide/pyodide/pull/835
https://github.com/pyodide/pyodide/pull/893

Pyodide, Release 0.21.1

Packages

New packages: freesasa, Ixml, python-sat, traits, astropy, pillow, scikit-image, imageio, numcodecs, msgpack,
asciitree, zarr

Note that due to the large size and the experimental state of the scipy package, packages that depend on scipy
(including scikit-image, scikit-learn) will take longer to load, use a lot of memory and may experience failures.

Updated packages: numpy 1.15.4, pandas 1.0.5, matplotlib 3.3.3 among others.

New package pyodide-interrupt, useful for handling interrupts in Pyodide (see project description for details).

Backward incompatible changes

Dropped support for loading .wasm files with incorrect MIME type, following #851

List of contributors

abolger, Aditya Shankar, Akshay Philar, Alexey Ignatiev, Aray Karjauv, casatir, chigozienri, Christian glacet, Dex-
ter Chua, Frithjof, Hood Chatham, Jan Max Meyer, Jay Harris, jcaesar, Joseph D. Long, Matthew Turk, Michael
Greminger, Michael Panchenko, mojighahar, Nicolas Ollinger, Ram Rachum, Roman Yurchak, Sergio, Seungmin Kim,
Shyam Saladi, smkm, Wei Ouyang

Version 0.15.0

May 19, 2020

Upgrades Pyodide to CPython 3.7.4.

micropip no longer uses a CORS proxy to install pure Python packages from PyPI. Packages are now installed
from PyPI directly.

micropip can now be used from web workers.
Adds support for installing pure Python wheels from arbitrary URLs with micropip.

The CDN URL for Pyodide changed to https://pyodide-cdn2.iodide.io/v0.15.0/full/pyodide.js It now supports
versioning and should provide faster downloads. The latest release can be accessed via https://pyodide-
cdn2.iodide.io/latest/full/

Adds messageCallback and errorCallback to pyodide. loadPackage.

Reduces the initial memory footprint (TOTAL_MEMORY) from 1 GiB to 5 MiB. More memory will be allocated as
needed.

When building from source, only a subset of packages can be built by setting the PYODIDE_PACKAGES environ-
ment variable. See partial builds documentation for more details.

New packages: future, autograd

134

Chapter 3. Table of contents

https://pypi.org/project/pyodide-interrupts/
https://github.com/pyodide/pyodide/pull/851

Pyodide, Release 0.21.1

Version 0.14.3

Dec 11, 2019
» Convert JavaScript numbers containing integers, e.g. 3.0, to a real Python long (e.g. 3).
e Adds __bool__ method to for JsProxy objects.
* Adds a JavaScript-side auto completion function for Iodide that uses jedi.

* New packages: nltk, jeudi, statsmodels, regex, cytoolz, xlrd, uncertainties

Version 0.14.0

Aug 14, 2019
* The built-in sqlite and bz2 modules of Python are now enabled.

* Adds support for auto-completion based on jedi when used in iodide

Version 0.13.0

May 31, 2019
» Tagged versions of Pyodide are now deployed to Netlify.

Version 0.12.0

May 3, 2019
User improvements:
 Packages with pure Python wheels can now be loaded directly from PyPI. See Micropip for more information.

* Thanks to PEP 562, you can now import js from Python and use it to access anything in the global JavaScript
namespace.

 Passing a Python object to JavaScript always creates the same object in JavaScript. This makes APIs like
removeEventListener usable.

* Calling dir () in Python on a JavaScript proxy now works.
 Passing an ArrayBuffer from JavaScript to Python now correctly creates a memoryview object.

* Pyodide now works on Safari.

Version 0.11.0

Apr 12, 2019
User improvements:
* Support for built-in modules:
— sqlite, crypt
» New packages: mne
Developer improvements:

* The mkpkg command will now select an appropriate archive to use, rather than just using the first.

3.3. Project 135

Pyodide, Release 0.21.1

* The included version of emscripten has been upgraded to 1.38.30 (plus a bugfix).

* New packages: jinja2, MarkupSafe

Version 0.10.0

Mar 21, 2019
User improvements:

* New packages: html51ib, pygments, beautifulsoup4, soupsieve, docutils, bleach, mne
Developer improvements:

* console.html provides a simple text-only interactive console to test local changes to Pyodide. The existing
notebooks based on legacy versions of Iodide have been removed.

e The run_docker script can now be configured with environment variables.

Pyodide Deprecation Timeline

Each Pyodide release may deprecate certain features from previous releases in a backward incompatible way. If a
feature is deprecated, it will continue to work until its removal, but raise warnings. We try to ensure deprecations are
done over at least two minor(feature) releases, however, as Pyodide is still in beta state, this list is subject to change and
some features can be removed without deprecation warnings. More details about each item can often be found in the
Change Log.

0.23.0

Names that used to be in the root pyodide module and were moved to submodules will no longer be available in the
root module.

0.21.0

* The globals argument to runPython and runPythonAsync will be passed as a named argument only.

* The extractDir argument to unpackArchive will be passed as a named argument only.

0.20.0

* The skip-host key will be removed from the meta.yaml format. If needed, install a host copy of the package with
pip instead.

¢ pyodide-interrupts module will be removed. If you were using this for some reason, use
setInterruptBuffer instead.

136 Chapter 3. Table of contents

Pyodide, Release 0.21.1

0.19.0

* The default working directory (home directory) inside the Pyodide virtual file system has been changed from /
to /home/pyodide. To get the previous behavior, you can

— call os.chdir("/") in Python to change working directory or
— call IoadPyodide with the homedir="/" argument

e When a JavaScript function is called from Python, PyProxy arguments and return values will be automatically
destroyed when the function is finished.

3.3.6 Related Projects

WebAssembly ecosystem

» emscripten is the compiler toolchain for WebAssembly that made Pyodide possible.

Notebook environments, IDEs, and REPLs
¢ Jodide is a notebook-like environment for literate scientific computing and communication for the web. It is no
longer actively maintained. Historically, Pyodide started as plugin for iodide.
* Starboard notebook is an in-browser literal notebook runtime that uses Pyodide for Python.
 Basthon notebook is a static fork of Jupyter notebook with a Pyodide kernel (currently in French).
* JupyterLite is a JupyterLab distribution that runs entirely in the browser, based on Pyodide.

* futurecoder is an interactive Python course running on Pyodide. It includes an IDE with a REPL, debuggers, and
automatic installation of any imported packages supported by Pyodide’s micropip.

Dashboards and visualization

* WebDash is a Plotly Dash distribution that runs entirely in the browser, using Pyodide.

Other projects

* wc-code is a library to run JavaScript, Python, and Theme in the browser with inline code blocks. It uses Pyodide
to execute Python code.

e SymPy Beta is a fork of SymPy Gamma. It’s an in-browser answer engine with a Pyodide backend.

3.3. Project 137

https://emscripten.org/
https://github.com/iodide-project/iodide
https://github.com/gzuidhof/starboard-notebook
https://notebook.basthon.fr/
https://github.com/jupyterlite/jupyterlite
https://futurecoder.io/
https://futurecoder.io/course/#ide
https://github.com/ibdafna/webdash
https://github.com/vanillawc/wc-code
https://github.com/eagleoflqj/sympy_beta

Pyodide, Release 0.21.1

138 Chapter 3. Table of contents

CHAPTER
FOUR

COMMUNICATION

Blog: blog.pyodide.org

Mailing list: mail.python.org/mailman3/lists/pyodide.python.org/
Gitter: gitter.im/pyodide/community

Twitter: twitter.com/pyodide

Stack Overflow: stackoverflow.com/questions/tagged/pyodide

139

https://blog.pyodide.org/
https://mail.python.org/mailman3/lists/pyodide.python.org/
https://gitter.im/pyodide/community
https://twitter.com/pyodide
https://stackoverflow.com/questions/tagged/pyodide

Pyodide, Release 0.21.1

140 Chapter 4. Communication

m

micropip, 70

P

pyodide.
pyodide.
pyodide.
pyodide.
.http, 67

.webloop, 69

pyodide
pyodide

code, 53
console, 57

ffi, 60
ffi.wrappers, 66

PYTHON MODULE INDEX

141

Pyodide, Release 0.21.1

142 Python Module Index

Symbols

[iterator] Q) (built-in function), 48
[toStringTag] (None attribute), 48

A

add_event_listener()
dide.ffi.wrappers), 67
apply O (built-in function), 48
assign(Q) (pyodide.ffi.JsProxy method), 61
assign_to(Q) (pyodide.ffi.JsProxy method), 61

B

bind () (built-in function), 49

body_used (pyodide.http.FetchResponse property), 67
buffer (pyodide.console.Console attribute), 58
buffer() (pyodide.http.FetchResponse method), 67
bytes() (pyodide.http.FetchResponse method), 68

C

call Q) (built-in function), 49
callRwargs () (built-in function), 49
catchQ) (built-in function), 49
catchQ) (pyodide.ffi.JsProxy method), 61
checkInterrupt () (built-in function), 41
clear_interval () (in module pyodide.ffi.wrappers), 67
clear_timeout () (in module pyodide.ffi.wrappers), 67
clone () (pyodide.http.FetchResponse method), 68
CodeRunner (class in pyodide.code), 53
compile() (pyodide.code.CodeRunner method), 54
complete() (pyodide.console.Console method), 58
completer_word_break_characters
dide.console.Console attribute), 58
Console (class in pyodide.console), 57
ConsoleFuture (class in pyodide.console), 59
ConversionError, 60
copy) (built-in function), 49
create_once_callable() (in module pyodide.ffi), 64
create_proxy() (in module pyodide.ffi), 64

D

delete() (built-in function), 49

(in module pyo-

(pyo-

INDEX

destroy() (built-in function), 49
destroy_proxies() (in module pyodide.ffi), 64

E

ERRNO_CODES (None attribute), 40

eval_code () (in module pyodide.code), 55
eval_code_async() (in module pyodide.code), 55
extend () (pyodide.ffi.JsProxy method), 61

F

FetchResponse (class in pyodide.http), 67

finally Q) (built-in function), 50

finally_Q) (pyodide.ffi.JsProxy method), 61

find_imports() (in module pyodide.code), 56

formatsyntaxerror() (pyodide.console.Console
method), 59

formatted_error (pyodide.console.ConsoleFuture at-
tribute), 59

formattraceback()
method), 59

freeze() (in module micropip), 70

from_file() (pyodide.ffi.JsProxy method), 61

FS (None attribute), 40

G

get) (built-in function), 50

getBuffer() (built-in function), 50

globals (None attribute), 40

globals (pyodide.console.Console attribute), 58
globalThis (module), 38

H

has Q) (built-in function), 50

install Q) (in module micropip), 70
isAwaitable() (built-in function), 50
isBuffer () (built-in function), 51
isCallable () (built-in function), 51
isIterable() (built-in function), 51
isIterator () (built-in function), 51

(pyodide.console.Console

143

Pyodide, Release 0.21.1

isPyProxy () (built-in function), 41

J

js_error (pyodide.ffi.JsException property), 61
js_id (pyodide.ffi.JsProxy property), 62
JsException, 60

json(Q) (pyodide.http.FetchResponse method), 68
JsProxy (class in pyodide.ffi), 61

L

length (None attribute), 48

list () (in module micropip), 71

loadedPackages (None attribute), 40
loadPackage () (built-in function), 41
loadPackagesFromImports() (built-in function), 41
loadPyodide () (built-in function), 38

M

memoryview() (pyodide.http.FetchResponse method), 68
micropip
module, 70
module
micropip, 70
pyodide.code, 53
pyodide.console, 57
pyodide. ££i, 60
pyodide. ffi.wrappers, 66
pyodide.http, 67
pyodide.webloop, 69

N

new PyProxyClass() (built-in function), 51
new() (pyodide.ffi.JsProxy method), 62
next () (built-in function), 51

O

object_entries() (pyodide.ffi.JsProxy method), 62
object_keys() (pyodide.ffi.JsProxy method), 62
object_values() (pyodide.ffi.JsProxy method), 62
ok (pyodide.http.FetchResponse property), 68
open_url () (in module pyodide.http), 68

P

package.PackageDict (class in micropip), 71
PATH (None attribute), 40

persistent_redirect_streams() (pyo-
dide.console.Console method), 59
persistent_restore_streams() (pyo-

dide.console.Console method), 59
push Q) (pyodide.console.Console method), 59
PyBuffer() (class), 44
PyBuffer.c_contiguous (PyBuffer attribute), 45
PyBuffer.data (PyBuffer attribute), 46

PyBuffer.
PyBuffer.
PyBuffer.
PyBuffer.
PyBuffer.
PyBuffer.
PyBuffer.
PyBuffer.

f_contiguous (PyBuffer attribute), 46
format (PyBuffer attribute), 46
itemsize (PyBuffer attribute), 46
nbytes (PyBuffer attribute), 46
ndim (PyBuffer attribute), 46
offset (PyBuffer attribute), 46
readonly (PyBuffer attribute), 46
release() (PyBuffer method), 46
PyBuffer.shape (PyBuffer attribute), 46
PyBuffer.strides (PyBuffer attribute), 46
pyfetch() (in module pyodide.http), 69
pyimport () (built-in function), 42
pyodide (module), 40
pyodide.code

module, 53
pyodide.console

module, 57
pyodide. ffi

module, 60
pyodide. ffi.wrappers

module, 66
pyodide.http

module, 67
pyodide.webloop

module, 69
pyodide_py (None attribute), 40
PyodideConsole (class in pyodide.console), 60
PyProxy (module), 48
PythonError () (class), 47

R

redirect_streams()
method), 59
redirected (pyodide.http. FetchResponse property), 68
register_js_module() (in module pyodide.ffi), 64
registerComlink () (built-in function), 42
registerlsModule() (built-in function), 42
remove_event_listener() (in module
dide.ffi.wrappers), 67
repr_shorten() (in module pyodide.console), 60
run() (pyodide.code.CodeRunner method), 54
run_async() (pyodide.code.CodeRunner method), 54
run_js () (in module pyodide.code), 57
runcode () (pyodide.console.Console method), 59
runPython() (built-in function), 42
runPythonAsync () (built-in function), 43
runsource() (pyodide.console.Console method), 59

S

set () (built-in function), 51

set_interval () (in module pyodide.ffi.wrappers), 67
set_timeout () (in module pyodide.ffi.wrappers), 67
setInterruptBuffer() (built-in function), 43
should_quiet () (in module pyodide.code), 57

(pyodide.console.Console

pyo-

144

Index

Pyodide, Release 0.21.1

status (pyodide.http. FetchResponse property), 68
status_text (pyodide.http. FetchResponse property), 68
stderr_callback (pyodide.console.Console attribute),

58

stdin_callback (pyodide.console.Console attribute),
58

stdout_callback (pyodide.console.Console attribute),
58

string() (pyodide.http.FetchResponse method), 68

supportsGet () (built-in function), 51

supportsHas () (built-in function), 51

supportsLength() (built-in function), 52

supportsSet () (built-in function), 52

syntax_check (pyodide.console.ConsoleFuture at-
tribute), 59

T

then() (built-in function), 52

then() (pyodide.ffi.JsProxy method), 62
to_bytes() (pyodide.ffi.JsProxy method), 62
to_file(Q) (pyodide.ffi.JsProxy method), 62
to_js) (in module pyodide.ffi), 64
to_memoryview() (pyodide.ffi.JsProxy method), 62
to_py) (pyodide.ffi.JsProxy method), 63
to_string () (pyodide.ffi.JsProxy method), 64
toJs () (built-in function), 52

toPy) (built-in function), 44

toString () (built-in function), 52

type (None attribute), 48

type (pyodide.http. FetchResponse property), 68
typeof (pyodide.ffi.JsProxy property), 64

U

unpack_archive() (pyodide.http. FetchResponse
method), 68

unpackArchive () (built-in function), 44

unregister_js_module() (in module pyodide.ffi), 66

unregister]sModule () (built-in function), 44

url (pyodide.http. FetchResponse property), 68

\Y

version (None attribute), 41

W

WebLoop (class in pyodide.webloop), 69
WebLoopPolicy (class in pyodide.webloop), 69

Index

145

	What is Pyodide?
	Try Pyodide
	Table of contents
	Using Pyodide
	Getting started
	Try it online
	Setup
	Running Python code
	Complete example
	Alternative Example
	Accessing Python scope from JavaScript
	Accessing JavaScript scope from Python

	Downloading and deploying Pyodide
	Downloading Pyodide
	CDN
	GitHub releases

	Serving Pyodide packages
	Serving locally
	Remote deployments

	Using Pyodide
	Web browsers
	Supported browsers

	Web Workers
	Node.js
	Node.js versions <0.17
	Using Pyodide in a web worker
	Setup
	Detailed example
	Consumers
	Web worker
	The worker API
	Caveats
	Loading custom Python code
	Using wheels
	Loading then importing Python code
	From Python
	From JavaScript
	Running external code directly
	Dealing with the file system
	Mounting a file system

	Loading packages
	Loading packages with pyodide.loadPackage
	Micropip
	Installing packages from PyPI
	Installing wheels from arbitrary URLs

	Example
	Packages built in Pyodide

	Type translations
	Round trip conversions
	Implicit conversions
	Python to JavaScript
	JavaScript to Python

	Proxying
	Proxying from JavaScript into Python
	Proxying from Python into JavaScript

	Explicit Conversion of Proxies
	Python to JavaScript
	JavaScript to Python

	Functions
	Calling Python objects from JavaScript
	Calling JavaScript functions from Python

	Buffers
	Using JavaScript Typed Arrays from Python
	Using Python Buffer objects from JavaScript

	Errors
	Importing Objects
	Importing Python objects into JavaScript
	Importing JavaScript objects into Python

	Pyodide Python compatibility
	Python Standard library
	Optional modules
	Removed modules
	Included but not working modules

	Interrupting execution
	Setting up interrupts
	Allowing JavaScript code to be interrupted

	API Reference
	JavaScript API
	Globals
	pyodide
	PyProxy

	Python API
	pyodide.code
	pyodide.console
	pyodide.ffi
	pyodide.http
	pyodide.webloop

	Micropip API
	pyodide-build CLI
	pyodide-build options
	pyodide serve
	pyodide serve options

	pyodide mkpkg
	pyodide mkpkg positional arguments
	pyodide mkpkg options

	pyodide create_xbuildenv
	pyodide create_xbuildenv options

	pyodide install_xbuildenv
	pyodide install_xbuildenv positional arguments
	pyodide install_xbuildenv options

	Frequently Asked Questions
	How can I load external files in Pyodide?
	Why can’t I load files from the local file system?
	How can I execute code in a custom namespace?
	How to detect that code is run with Pyodide?
	How do I create custom Python packages from JavaScript?
	How can I send a Python object from my server to Pyodide?
	How can I use a Python function as an event handler?
	How can I use fetch with optional arguments from Python?
	How can I control the behavior of stdin / stdout / stderr?
	Micropip can’t find a pure Python wheel
	How can I change the behavior of runPython and runPythonAsync?

	Development
	Building from sources
	Build instructions
	Using Docker

	Using make
	Partial builds
	Environment variables

	Creating a Pyodide package
	Determining if creating a Pyodide package is necessary
	Building Python wheels (out of tree)
	Notes

	Building a Python package (in tree)
	1. Creating the meta.yaml file
	2. Building the package and investigating issues
	Writing tests for your package
	Generating patches
	Migrating Patches
	Upstream your patches!
	The package build pipeline
	Partial Rebuilds
	C library dependencies
	Structure of a Pyodide package
	The meta.yaml specification
	package
	package/name
	package/version
	source
	source/url
	source/extract_dir
	source/path
	source/md5
	source/sha256
	source/patches
	source/extras
	build
	build/cflags
	build/cxxflags
	build/ldflags
	build/exports
	build/backend-flags
	build/library
	build/sharedlibrary
	build/script
	build/cross-script
	build/post
	build/unvendor-tests
	requirements
	requirements/run
	test
	test/imports
	Supported Environment Variables

	Rust/PyO3 Packages

	How to Contribute
	Development Workflow
	Code of Conduct
	Development
	Bugs & Issues
	How to Contribute
	Contributing to the “core” C Code

	Documentation
	Building the docs

	Migrating patches
	Maintainer information
	License
	Get in Touch
	Contributing to the “core” C Code
	What the files do
	Backend utilities
	Type conversion from JavaScript to Python
	Type conversion from Python to JavaScript
	CPython APIs
	Conventions for indicating errors
	Python APIs to avoid:
	Error Handling Macros
	Error Propagation Macros
	JavaScript to CPython calling convention adaptors
	Structure of functions
	Testing

	Maintainer information
	Making a release
	Release Instructions
	Making a minor release
	Making an alpha release
	Fixing documentation for a released version

	Testing and benchmarking
	Testing
	Running the Python test suite
	Custom test marks

	Running the JavaScript test suite
	Manual interactive testing

	Benchmarking
	Linting

	Debugging tips
	Run prettier on pyodide.asm.js
	Linker error: function signature mismatch
	Misencoded Wasm
	Debugging RuntimeError: function signature mismatch
	Dealing with ;; text is truncated due to size
	Using C source maps

	Project
	What is Pyodide?
	History
	Contributing
	Citing
	Communication
	Donations
	License
	Infrastructure support

	Roadmap
	Reducing download sizes and initialization times
	Improve performance of Python code in Pyodide
	Better support and documentation for loading user Python code
	Improvements to package loading system
	Find a better way to compile Fortran
	Better project sustainability
	Improve support for WebWorkers
	Synchronous IO
	Write http.client in terms of Web APIs

	Code of Conduct
	Conduct
	Moderation

	Governance and Decision-making
	Roles And Responsibilities
	Contributors
	Community members team
	Core developers

	Decision Making Process

	Change Log
	Version 0.21.1
	Version 0.21.0
	Build system
	Pyodide Module and type conversions
	REPL
	micropip and package loading
	Packages
	Miscellaneous
	List of contributors

	Version 0.20.0
	CPython and stdlib
	Packages
	Type translations
	Javascript package
	pyodide_build
	Uncategorized
	List of contributors

	Version 0.19.1
	Packages
	Type translations
	REPL
	List of contributors

	Version 0.19.0
	Python package
	JavaScript package
	Python / JavaScript type conversions
	pyodide-build
	micropip
	Packages
	Uncategorized
	List of contributors

	Version 0.18.1
	Console
	Python package
	JavaScript package
	Python / JavaScript type conversions
	Packages
	Micellaneous

	Version 0.18.0
	General
	Standard library
	JavaScript package
	Python package
	Python / JavaScript type conversions
	pyodide-build
	micropip
	Packages
	List of contributors

	Version 0.17.0
	Improvements to package loading and dynamic linking
	Python / JS type conversions
	pyodide-py package
	pyodide-js
	micropip
	Build system
	REPL
	Packages
	List of contributors

	Version 0.16.1
	Python and the standard library
	Python / JS type conversions
	pyodide-py package and micropip
	Build system
	Other improvements
	Packages
	Backward incompatible changes
	List of contributors

	Version 0.15.0
	Version 0.14.3
	Version 0.14.0
	Version 0.13.0
	Version 0.12.0
	Version 0.11.0
	Version 0.10.0
	Pyodide Deprecation Timeline
	0.23.0
	0.21.0
	0.20.0
	0.19.0

	Related Projects
	WebAssembly ecosystem
	Notebook environments, IDEs, and REPLs
	Dashboards and visualization
	Other projects

	Communication
	Python Module Index
	Index

