
Pyodide
Release 0.26.0.dev0

unknown

Apr 28, 2024

CONTENTS

1 What is Pyodide? 3

2 Try Pyodide 5

3 Table of contents 7

4 Communication 227

Python Module Index 229

Index 231

i

ii

Pyodide, Release 0.26.0.dev0

Pyodide is a Python distribution for the browser and Node.js based on WebAssembly.

CONTENTS 1

Pyodide, Release 0.26.0.dev0

2 CONTENTS

CHAPTER

ONE

WHAT IS PYODIDE?

Pyodide is a port of CPython to WebAssembly/Emscripten.

Pyodide makes it possible to install and run Python packages in the browser with micropip. Any pure Python package
with a wheel available on PyPI is supported. Many packages with C extensions have also been ported for use with
Pyodide. These include many general-purpose packages such as regex, pyyaml, lxml and scientific Python packages
including numpy, pandas, scipy, matplotlib, and scikit-learn.

Pyodide comes with a robust Javascript Python foreign function interface so that you can freely mix these two languages
in your code with minimal friction. This includes full support for error handling (throw an error in one language, catch
it in the other), async/await, and much more.

When used inside a browser, Python has full access to the Web APIs.

3

https://emscripten.org/
https://pyodide.org/en/stable/usage/api/micropip-api.html

Pyodide, Release 0.26.0.dev0

4 Chapter 1. What is Pyodide?

CHAPTER

TWO

TRY PYODIDE

Try Pyodide in a REPL directly in your browser (no installation needed).

5

./console.html

Pyodide, Release 0.26.0.dev0

6 Chapter 2. Try Pyodide

CHAPTER

THREE

TABLE OF CONTENTS

3.1 Using Pyodide

3.1.1 Getting started

Try it online

Try Pyodide in a REPL directly in your browser (no installation needed).

Setup

There is a complete example that you can copy & paste into an html file below. To include Pyodide in your project you
can use the following CDN URL:

https://cdn.jsdelivr.net/pyodide/dev/full/pyodide.js

You can also download a release from GitHub releases or build Pyodide yourself. See Downloading and deploying
Pyodide for more details.

The pyodide.js file defines a single async function called loadPyodide() which sets up the Python environment
and returns the Pyodide top level namespace.

async function main() {
let pyodide = await loadPyodide();
// Pyodide is now ready to use...
console.log(pyodide.runPython(`
import sys
sys.version

`));
};
main();

7

../console.html
https://github.com/pyodide/pyodide/releases

Pyodide, Release 0.26.0.dev0

Running Python code

Python code is run using the pyodide.runPython() function. It takes as input a string of Python code. If the code
ends in an expression, it returns the result of the expression, translated to JavaScript objects (see Type translations).
For example the following code will return the version string as a JavaScript string:

pyodide.runPython(`
import sys
sys.version

`);

After importing Pyodide, only packages from the standard library are available. See Loading packages for information
about loading additional packages.

Complete example

Create and save a test index.html page with the following contents:

<!doctype html>
<html>

<head>
<script src="https://cdn.jsdelivr.net/pyodide/dev/full/pyodide.js"></script>

</head>
<body>

Pyodide test page

Open your browser console to see Pyodide output
<script type="text/javascript">
async function main(){
let pyodide = await loadPyodide();
console.log(pyodide.runPython(`

import sys
sys.version

`));
pyodide.runPython("print(1 + 2)");

}
main();

</script>
</body>

</html>

Alternative Example

<!doctype html>
<html>

<head>
<script src="https://cdn.jsdelivr.net/pyodide/dev/full/pyodide.js"></script>

</head>

<body>
<p>
You can execute any Python code. Just enter something in the box below and

(continues on next page)

8 Chapter 3. Table of contents

Pyodide, Release 0.26.0.dev0

(continued from previous page)

click the button.
</p>
<input id="code" value="sum([1, 2, 3, 4, 5])" />
<button onclick="evaluatePython()">Run</button>

<div>Output:</div>
<textarea id="output" style="width: 100%;" rows="6" disabled></textarea>

<script>
const output = document.getElementById("output");
const code = document.getElementById("code");

function addToOutput(s) {
output.value += ">>>" + code.value + "\n" + s + "\n";

}

output.value = "Initializing...\n";
// init Pyodide
async function main() {
let pyodide = await loadPyodide();
output.value += "Ready!\n";
return pyodide;

}
let pyodideReadyPromise = main();

async function evaluatePython() {
let pyodide = await pyodideReadyPromise;
try {
let output = pyodide.runPython(code.value);
addToOutput(output);

} catch (err) {
addToOutput(err);

}
}

</script>
</body>

</html>

Accessing Python scope from JavaScript

All functions and variables defined in the Python global scope are accessible via the pyodide.globals object.

For example, if you run the code x = [3, 4] in Python global scope, you can access the global variable x from
JavaScript in your browser’s developer console with pyodide.globals.get("x"). The same goes for functions and
imports. See Type translations for more details.

You can try it yourself in the browser console. Go to the Pyodide REPL URL and type the following into the browser
console:

pyodide.runPython(`
x = [3, 4]

(continues on next page)

3.1. Using Pyodide 9

../console.html

Pyodide, Release 0.26.0.dev0

(continued from previous page)

`);
pyodide.globals.get('x').toJs();
// >>> [3, 4]

You can assign new values to Python global variables or create new ones from Javascript.

// re-assign a new value to an existing variable
pyodide.globals.set("x", 'x will be now string');

// add the js "alert" function to the Python global scope
// this will show a browser alert if called from Python
pyodide.globals.set("alert", alert);

// add a "square" function to Python global scope
pyodide.globals.set("square", x => x*x);

// Test the new "square" Python function
pyodide.runPython("square(3)");

Accessing JavaScript scope from Python

The JavaScript scope can be accessed from Python using the jsmodule (see Importing JavaScript objects into Python).
We can use it to access global variables and functions from Python. For instance, we can directly manipulate the DOM:

import js

div = js.document.createElement("div")
div.innerHTML = "<h1>This element was created from Python</h1>"
js.document.body.prepend(div)

3.1.2 Downloading and deploying Pyodide

Downloading Pyodide

CDN

Pyodide is available from the JsDelivr CDN

channel indexURL Comments REPL
Latest
release

https://cdn.jsdelivr.net/
pyodide/dev/full/

Recommended, cached by the browser link

Dev (main
branch)

https://cdn.jsdelivr.net/
pyodide/dev/full/

Re-deployed for each commit on main, no browser
caching, should only be used for testing

link

For a given version, several build variants are also available,

• <version>/full/: the default full build

• <version>/debug/: build with unminified pyodide.asm.js useful for debugging

10 Chapter 3. Table of contents

https://pyodide.org/en/stable/console.html
https://pyodide.org/en/latest/console.html

Pyodide, Release 0.26.0.dev0

GitHub releases

You can also download Pyodide packages from GitHub releases. The full distribution including all vendored packages
is available as pyodide-0.26.0.dev0.tar.bz2. The full distribution is quite large (200+ megabytes). The minimal
set of files needed to start Pyodide is included as pyodide-core-0.26.0.dev0.tar.bz2. It is intended for use with
node which will automatically install missing packages from the cdn – it is the same set of files that are installed if you
use npm install pyodide. It may also be convenient for other purposes.

You will need to serve these files yourself.

Serving Pyodide packages

Serving locally

With Python 3.7.5+ you can serve Pyodide files locally with http.server:

python -m http.server

from the Pyodide distribution folder. Navigate to http://localhost:8000/console.html and the Pyodide repl should load.

Remote deployments

Any service that hosts static files and that correctly sets the WASM MIME type and CORS headers will work. For
instance, you can use GitHub Pages or similar services.

For additional suggestions for optimizing the size and load time for Pyodide, see the Emscripten documentation about
deployments.

3.1.3 Using Pyodide

Pyodide may be used in a web browser or a backend JavaScript environment.

Web browsers

To use Pyodide in a web page you need to load pyodide.js and initialize Pyodide with loadPyodide().

<!doctype html>
<html>

<head>
<script src="https://cdn.jsdelivr.net/pyodide/dev/full/pyodide.js"></script>

</head>
<body>

<script type="text/javascript">
async function main(){
let pyodide = await loadPyodide();
console.log(pyodide.runPython("1 + 2"));

}
main();

</script>
</body>

</html>

3.1. Using Pyodide 11

https://github.com/pyodide/pyodide/releases
https://docs.python.org/3.11/library/http.server.html#module-http.server
http://localhost:8000/console.html
https://emscripten.org/docs/compiling/Deploying-Pages.html
https://emscripten.org/docs/compiling/Deploying-Pages.html

Pyodide, Release 0.26.0.dev0

See the Getting started for a walk-through tutorial as well as Loading packages and Type translations for a more in
depth discussion about existing capabilities.

You can also use the Pyodide NPM package to integrate Pyodide into your application.

Note: To avoid confusion, note that:

• cdn.jsdelivr.net/pyodide/ distributes Python packages built with Pyodide as well as pyodide.js

• cdn.jsdelivr.net/npm/pyodide@0.19.0/ is a mirror of the Pyodide NPM package, which includes none
of the WASM files

Supported browsers

Webassembly support in browsers is evolving very rapidly, and we recommend using the latest browsers whenever
possible to take full advantage of Pyodide and its webassembly features. If you are using an older browser, some
features may not work properly.

Currently, Pyodide is being tested against the following browser versions, so we recommend using a browser version
at least equal to or higher than these.

Browser Version Release date
Firefox 112 11 April 2023
Chrome 112 29 March 2023
Safari 16.4 27 March 2023

Web Workers

By default, WebAssembly runs in the main browser thread, and it can make UI non-responsive for long-running com-
putations.

To avoid this situation, one solution is to run Pyodide in a WebWorker.

It’s also possible to run Pyodide in a Service Worker.

If you’re not sure whether you need web workers or service workers, here’s an overview and comparison of the two.

Node.js

Warning: Starting with Pyodide 0.25.0, Node.js < 18 is no longer officially supported. Older versions of Node.js
might still work, but they are not tested or guaranteed to work.

Note: The following instructions have been tested with Node.js 18.5.0. To use Pyodide with older versions of Node,
you might need to use additional command line arguments, see below.

It is now possible to install the Pyodide npm package in Node.js. To follow these instructions you need at least Pyodide
0.21.0. You can explicitly ask npm to use the alpha version:

12 Chapter 3. Table of contents

https://www.npmjs.com/package/pyodide
https://web.dev/workers-overview/
https://www.npmjs.com/package/pyodide

Pyodide, Release 0.26.0.dev0

$ npm install "pyodide@>=0.21.0-alpha.2"

Once installed, you can run the following simple script:

// hello_python.js
const { loadPyodide } = require("pyodide");

async function hello_python() {
let pyodide = await loadPyodide();
return pyodide.runPythonAsync("1+1");

}

hello_python().then((result) => {
console.log("Python says that 1+1 =", result);

});

$ node hello_python.js
Python says that 1+1= 2

Or you can use the REPL. To start the Node.js REPL with support for top level await, use node
--experimental-repl-await:

$ node --experimental-repl-await
Welcome to Node.js v18.5.0.
Type ".help" for more information.
> const { loadPyodide } = require("pyodide");
undefined
> let pyodide = await loadPyodide();
undefined
> await pyodide.runPythonAsync("1+1");
2

Loading custom Python code

Pyodide provides a simple API pyodide.runPython() to run Python code. However, when your Python code grow
bigger, putting hundreds of lines inside runPython is not scalable.

For larger projects, the best way to run Python code with Pyodide is:

1. create a Python package

2. load your Python package into the Pyodide (Emscripten) virtual file system

3. import the package with let mypkg = pyodide.pyimport("mypkgname")

4. call into your package with mypkg.some_api(some_args).

3.1. Using Pyodide 13

Pyodide, Release 0.26.0.dev0

Using wheels

The best way of serving custom Python code is making it a package in the wheel (.whl) format. If the package is built as
a wheel file, you can use micropip.install() to install the package. See Loading packages for more information.

Packages with C extensions

If your Python code contains C extensions, it needs to be built in a specialized way (See Creating a Pyodide package).

Loading then importing Python code

It is also possible to download and import Python code from an external source. We recommend that you serve all files
in an archive, instead of individually downloading each Python script.

From Python

// Downloading an archive
await pyodide.runPythonAsync(`

from pyodide.http import pyfetch
response = await pyfetch("https://.../your_package.tar.gz") # .zip, .whl, ...
await response.unpack_archive() # by default, unpacks to the current dir

`)
pkg = pyodide.pyimport("your_package");
pkg.do_something();

// Downloading a single file
await pyodide.runPythonAsync(`

from pyodide.http import pyfetch
response = await pyfetch("https://.../script.py")
with open("script.py", "wb") as f:

f.write(await response.bytes())
`)
pkg = pyodide.pyimport("script");
pkg.do_something();

What is pyfetch?

Pyodide provides pyfetch(), which is a convenient wrapper of JavaScript fetch. See How can I load external files
in Pyodide? for more information.

14 Chapter 3. Table of contents

https://micropip.pyodide.org/en/v0.2.2/project/api.html#micropip.install

Pyodide, Release 0.26.0.dev0

From JavaScript

let response = await fetch("https://.../your_package.tar.gz"); // .zip, .whl, ...
let buffer = await response.arrayBuffer();
await pyodide.unpackArchive(buffer, "gztar"); // by default, unpacks to the current dir
pyodide.pyimport("your_package");

Warning on unpacking a wheel package

Since a wheel package is actually a zip archive, you can use pyodide.unpackArchive() to unpack a wheel package,
instead of using micropip.install().

However, micropip does dependency resolution when installing packages, while pyodide.unpackArchive() sim-
ply unpacks the archive. So you must be aware of that each dependencies of a package need to be installed manually
before unpacking a wheel.

Future plans: we are planning to support a method for a static dependency resolution (See: pyodide#2045).

Running external code directly

If you want to run a single Python script from an external source in a simplest way, you can:

pyodide.runPython(await (await fetch("https://some_url/.../code.py")).text());

Dealing with the file system

Pyodide includes a file system provided by Emscripten. In JavaScript, the Pyodide file system can be accessed through
pyodide.FS which re-exports the Emscripten File System API

Example: Reading from the file system

pyodide.runPython(`
from pathlib import Path

Path("/hello.txt").write_text("hello world!")
`);

let file = pyodide.FS.readFile("/hello.txt", { encoding: "utf8" });
console.log(file); // ==> "hello world!"

Example: Writing to the file system

let data = "hello world!";
pyodide.FS.writeFile("/hello.txt", data, { encoding: "utf8" });
pyodide.runPython(`
from pathlib import Path

print(Path("/hello.txt").read_text())
`);

3.1. Using Pyodide 15

https://micropip.pyodide.org/en/v0.2.2/project/api.html#micropip.install
https://micropip.pyodide.org/en/v0.2.2/project/api.html#module-micropip
https://github.com/pyodide/pyodide/issues/2045
https://emscripten.org/docs/api_reference/Filesystem-API.html#filesystem-api

Pyodide, Release 0.26.0.dev0

Mounting a file system

The default file system used in Pyodide is MEMFS, which is a virtual in-memory file system. The data stored in
MEMFS will be lost when the page is reloaded.

If you wish for files to persist, you can mount other file systems. Other file systems provided by Emscripten are IDBFS,
NODEFS, PROXYFS, WORKERFS. Note that some filesystems can only be used in specific runtime environments. See
Emscripten File System API for more details. For instance, to store data persistently between page reloads, one could
mount a folder with the IDBFS file system

let mountDir = "/mnt";
pyodide.FS.mkdirTree(mountDir);
pyodide.FS.mount(pyodide.FS.filesystems.IDBFS, {}, mountDir);

If you are using Node.js you can access the native file system by mounting NODEFS.

let mountDir = "/mnt";
pyodide.FS.mkdirTree(mountDir);
pyodide.FS.mount(pyodide.FS.filesystems.NODEFS, { root: "." }, mountDir);
pyodide.runPython("import os; print(os.listdir('/mnt'))");
// ==> The list of files in the Node working directory

(Experimental) Using the native file system in the browser

You can access the native file system from the browser using the File System Access API.

This is experimental

The File System Access API is only supported in Chromium based browsers: Chrome and Edge (as of 2022/08/18).

Mounting a directory

Pyodide provides an API pyodide.mountNativeFS() which mounts a FileSystemDirectoryHandle into the Py-
odide Python file system.

const dirHandle = await showDirectoryPicker();
const permissionStatus = await dirHandle.requestPermission({

mode: "readwrite",
});

if (permissionStatus !== "granted") {
throw new Error("readwrite access to directory not granted");

}

const nativefs = await pyodide.mountNativeFS("/mount_dir", dirHandle);

pyodide.runPython(`
import os
print(os.listdir('/mount_dir'))

`);

16 Chapter 3. Table of contents

https://emscripten.org/docs/api_reference/Filesystem-API.html#memfs
https://emscripten.org/docs/api_reference/Filesystem-API.html#filesystem-api
https://emscripten.org/docs/api_reference/Filesystem-API.html#filesystem-api-idbfs
https://developer.mozilla.org/en-US/docs/Web/API/File_System_Access_API
https://developer.mozilla.org/en-US/docs/Web/API/FileSystemDirectoryHandle

Pyodide, Release 0.26.0.dev0

Synchronizing changes to native file system

Due to browser limitations, the changes in the mounted file system is not synchronized by default. In order to persist
any operations to an native file system, you must call

// nativefs is the returned from: await pyodide.mountNativeFS('/mount_dir', dirHandle)
pyodide.runPython(`
with open('/mount_dir/new_file.txt', 'w') as f:
f.write("hello");

`);

// new_file.txt does not exist in native file system

await nativefs.syncfs();

// new_file.txt will now exist in native file system

or

pyodide.FS.syncfs(false, callback_func);

Accessing Files Quick Reference

For development of modules to use in Pyodide, the best experience comes from using Pyodide in Node and mounting
the development directory into Pyodide using the NodeFS. In the NodeFS, all changes to your native file system are
immediately reflected in Pyodide and vice versa.

If your code is browser-only, you can use the Chrome NativeFS for development. This will not automatically sync up
with your native file system, but it is still quite convenient.

In Node.js

It’s recommended to use pyodide.mountNodeFS() to mount the host file system so that it is accessible from inside
of Pyodide. For example if you have a Python package in a folder called my_package, you can do:

pyodide.mountNodeFS("my_package", "/path/to/my_package");
pyodide.runPython(`
import my_package
... use it
`);

In the browser

To access local files in Chrome, you can use the File System Access API to acquire a directory handle and then mount
the directory into the Pyodide file system with pyodide.mountNativeFS(). To acquire the directory handle, you
have to fill out a folder picker the first time. The handle can subsequently be stored in the IndexedDB. You will still be
prompted for read and write access, but you don’t have to deal with the folder picker again.

The following code is a good starting point:

3.1. Using Pyodide 17

Pyodide, Release 0.26.0.dev0

const { get, set } = await import(
"https://unpkg.com/idb-keyval@5.0.2/dist/esm/index.js"

);

/**
* Mount a folder from your native filesystem as the directory
* `pyodideDirectory`. If `directoryKey` was used previously, then it will reuse
* the same folder as last time. Otherwise, it will show a directory picker.
*/
async function mountDirectory(pyodideDirectory, directoryKey) {
let directoryHandle = await get(directoryKey);
const opts = {
id: "mountdirid",
mode: "readwrite",

};
if (!directoryHandle) {
directoryHandle = await showDirectoryPicker(opts);
await set(directoryKey, directoryHandle);

}
const permissionStatus = await directoryHandle.requestPermission(opts);
if (permissionStatus !== "granted") {
throw new Error("readwrite access to directory not granted");

}
const { syncfs } = await pyodide.mountNativeFS(
pyodideDirectory,
directoryHandle,

);
return syncfs;

}

See (Experimental) Using the native file system in the browser for more information.

Downloading external archives

If you are using Pyodide in the browser, you should download external files and save them to the virtual file system. The
recommended way to do this is to zip the files and unpack them into the file system with pyodide.unpackArchive():

let zipResponse = await fetch("myfiles.zip");
let zipBinary = await zipResponse.arrayBuffer();
pyodide.unpackArchive(zipBinary, "zip");

You can also download the files from Python using pyfetch(), which is a convenient wrapper of JavaScript fetch():

await pyodide.runPythonAsync(`
from pyodide.http import pyfetch
response = await pyfetch("https://some_url/myfiles.zip")
await response.unpack_archive()

`)

18 Chapter 3. Table of contents

https://developer.mozilla.org/en-US/docs/Web/API/fetch

Pyodide, Release 0.26.0.dev0

Using Pyodide in a web worker

This document describes how to use Pyodide to execute Python scripts asynchronously in a web worker.

Setup

Setup your project to serve webworker.js. You should also serve pyodide.js, and all its associated .asm.js, .
json, and .wasm files as well, though this is not strictly required if pyodide.js is pointing to a site serving current
versions of these files. The simplest way to serve the required files is to use a CDN, such as https://cdn.jsdelivr.
net/pyodide. This is the solution presented here.

Update the webworker.js sample so that it has as valid URL for pyodide.js, and sets indexURL to the location of
the supporting files.

In your application code create a web worker new Worker(...), and attach listeners to it using its .onerror and
.onmessage methods (listeners).

Communication from the worker to the main thread is done via the Worker.postMessage() method (and vice versa).

Detailed example

In this example process we will have three parties involved:

• The web worker is responsible for running scripts in its own separate thread.

• The worker API exposes a consumer-to-provider communication interface.

• The consumers want to run some scripts outside the main thread, so they don’t block the main thread.

Consumers

Our goal is to run some Python code in another thread, this other thread will not have access to the main thread objects.
Therefore, we will need an API that takes as input not only the Python script we want to run, but also the context
on which it relies (some JavaScript variables that we would normally get access to if we were running the Python script
in the main thread). Let’s first describe what API we would like to have.

Here is an example of consumer that will exchange with the web worker, via the worker interface/API py-worker.js.
It runs the following Python script using the provided context and a function called asyncRun().

import { asyncRun } from "./py-worker";

const script = `
import statistics
from js import A_rank
statistics.stdev(A_rank)

`;

const context = {
A_rank: [0.8, 0.4, 1.2, 3.7, 2.6, 5.8],

};

async function main() {
try {
const { results, error } = await asyncRun(script, context);

(continues on next page)

3.1. Using Pyodide 19

Pyodide, Release 0.26.0.dev0

(continued from previous page)

if (results) {
console.log("pyodideWorker return results: ", results);

} else if (error) {
console.log("pyodideWorker error: ", error);

}
} catch (e) {
console.log(
`Error in pyodideWorker at ${e.filename}, Line: ${e.lineno}, ${e.message}`,

);
}

}

main();

Before writing the API, let’s first have a look at how the worker operates. How does our web worker run the script
using a given context.

Web worker

Let’s start with the definition. A worker is:

A worker is an object created using a constructor (e.g. Worker()) that runs a named JavaScript file —
this file contains the code that will run in the worker thread; workers run in another global context that is
different from the current window. This context is represented by either a DedicatedWorkerGlobalScope
object (in the case of dedicated workers - workers that are utilized by a single script), or a SharedWorker-
GlobalScope (in the case of shared workers - workers that are shared between multiple scripts).

In our case we will use a single worker to execute Python code without interfering with client side rendering (which is
done by the main JavaScript thread). The worker does two things:

1. Listen on new messages from the main thread

2. Respond back once it finished executing the Python script

These are the required tasks it should fulfill, but it can do other things. For example, to always load packages numpy
and pytz, you would insert the line await pyodide.loadPackage(['numpy', 'pytz']); as shown below:

// webworker.js

// Setup your project to serve `py-worker.js`. You should also serve
// `pyodide.js`, and all its associated `.asm.js`, `.json`,
// and `.wasm` files as well:
importScripts("https://cdn.jsdelivr.net/pyodide/dev/full/pyodide.js");

async function loadPyodideAndPackages() {
self.pyodide = await loadPyodide();
await self.pyodide.loadPackage(["numpy", "pytz"]);

}
let pyodideReadyPromise = loadPyodideAndPackages();

self.onmessage = async (event) => {
// make sure loading is done
await pyodideReadyPromise;
// Don't bother yet with this line, suppose our API is built in such a way:

(continues on next page)

20 Chapter 3. Table of contents

https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://developer.mozilla.org/en-US/docs/Web/API/Worker/Worker

Pyodide, Release 0.26.0.dev0

(continued from previous page)

const { id, python, ...context } = event.data;
// The worker copies the context in its own "memory" (an object mapping name to values)
for (const key of Object.keys(context)) {
self[key] = context[key];

}
// Now is the easy part, the one that is similar to working in the main thread:
try {
await self.pyodide.loadPackagesFromImports(python);
let results = await self.pyodide.runPythonAsync(python);
self.postMessage({ results, id });

} catch (error) {
self.postMessage({ error: error.message, id });

}
};

The worker API

Now that we established what the two sides need and how they operate, let’s connect them using this simple API
(py-worker.js). This part is optional and only a design choice, you could achieve similar results by exchanging
message directly between your main thread and the webworker. You would just need to call .postMessages() with
the right arguments as this API does.

const pyodideWorker = new Worker("./dist/webworker.js");

const callbacks = {};

pyodideWorker.onmessage = (event) => {
const { id, ...data } = event.data;
const onSuccess = callbacks[id];
delete callbacks[id];
onSuccess(data);

};

const asyncRun = (() => {
let id = 0; // identify a Promise
return (script, context) => {
// the id could be generated more carefully
id = (id + 1) % Number.MAX_SAFE_INTEGER;
return new Promise((onSuccess) => {
callbacks[id] = onSuccess;
pyodideWorker.postMessage({
...context,
python: script,
id,

});
});

};
})();

export { asyncRun };

3.1. Using Pyodide 21

Pyodide, Release 0.26.0.dev0

Caveats

Using a web worker is advantageous because the Python code is run in a separate thread from your main UI, and hence
does not impact your application’s responsiveness. There are some limitations, however. At present, Pyodide does not
support sharing the Python interpreter and packages between multiple web workers or with your main thread. Since
web workers are each in their own virtual machine, you also cannot share globals between a web worker and your main
thread. Finally, although the web worker is separate from your main thread, the web worker is itself single threaded, so
only one Python script will execute at a time.

Using Pyodide in a service worker

This document describes how to use Pyodide to execute Python scripts in a service worker. Compared to typical web
workers, service workers are more related to acting as a network proxy, handling background tasks, and things like
caching and offline. See this article for more info.

Detailed example

For our example, we’ll be talking about how we can use a service worker to intercept a fetch call for some data and
modify the data. We will have two parties involved:

• The service worker which will be intercepting fetch calls for JSON, and modifying the data before returning it

• The consumer which will be fetching some JSON data

To keep things simple, all we’ll do is add a field to a fetched JSON object, but an example of a more interesting use
case is transforming fetched tabular data using numpy, and caching the result before returning it.

Please note that service workers will only work on https and localhost, so you will require a server to be running for
this example.

Setup

Setup your project to serve the service worker script sw.js, and a XMLHttpRequest polyfill - one such polyfill that
works in service workers is xhr-shim. You should also serve pyodide.js, and all its associated .asm.js, .json, and
.wasm files as well, though this is not strictly required if pyodide.js is pointing to a site serving current versions
of these files. The simplest way to serve the required files is to use a CDN, such as https://cdn.jsdelivr.net/
pyodide.

Update the sw.js sample so that it has a valid URL for pyodide.js, and sets indexURL to the location of the sup-
porting files.

You’ll also need to serve data.json, a JSON file containing a simple object - a sample is provided below:

{
"name": "Jem"

}

22 Chapter 3. Table of contents

https://web.dev/workers-overview/#use-cases
https://www.npmjs.com/package/xhr-shim

Pyodide, Release 0.26.0.dev0

Consumer

In our consumer, we want to register our service worker - in the html below, we’re registering a classic-type service
worker. For convenience, we also provide a button that fetches data and logs it.

<!doctype html>
<html>

<head>
<script>
/* UPDATE PATHS TO POINT TO YOUR ASSETS */
const SERVICE_WORKER_PATH = "/sw.js";
const JSON_FILE_PATH = "./data.json";
/* IF USING MODULE-TYPE SERVICE WORKER, REPLACE THESE OPTIONS */
const REGISTRATION_OPTIONS = {

scope: "/",
};

// modified snippet from
// https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API/Using_

→˓Service_Workers
async function registerServiceWorker() {
if ("serviceWorker" in navigator) {
try {
const registration = await navigator.serviceWorker.register(
SERVICE_WORKER_PATH,
REGISTRATION_OPTIONS,

);
if (registration.installing) {
console.log("Service worker installing");

} else if (registration.waiting) {
console.log("Service worker installed");

} else if (registration.active) {
console.log("Service worker active");

}
} catch (error) {
console.error(`Registration failed with ${error}`);

}
}

}

async function fetchAndLogData() {
try {

console.log(await (await fetch(JSON_FILE_PATH)).json());
} catch (e) {
console.error("Failed to fetch", e);

}
}

registerServiceWorker();
</script>

</head>

<body>
(continues on next page)

3.1. Using Pyodide 23

Pyodide, Release 0.26.0.dev0

(continued from previous page)

<button onclick="fetchAndLogData()">Fetch and log data</button>
</body>

</html>

Service worker

To set up Pyodide in a service worker, you’ll need to do the following:

1. Polyfill XMLHttpRequest because it isn’t available in service workers’ global scopes.

2. Import Pyodide

3. We don’t need it for this example, but if you’re planning on calling loadPyodide after installation of the service
worker, import pyodide.asm.js too.

After all the required scripts are imported, we call loadPyodide to set up Pyodide, then create a Python function
called modify_data. This function add a count property to an object, where count is equal to the number of times
modify_data is called. We will access this function via a handle assigned to the Javascript variable modifyData. We
also set up a fetch event handler that intercepts requests for json files so that any JSON object that is fetched is modified
using modifyData.

/* sw.js */
/* MODIFY IMPORT PATHS TO POINT TO YOUR SCRIPTS, REPLACE IF USING MODULE-TYPE WORKER */
// We're using the npm package xhr-shim, which assigns self.XMLHttpRequestShim
importScripts("./node_modules/xhr-shim/src/index.js");
self.XMLHttpRequest = self.XMLHttpRequestShim;
importScripts("./pyodide.js");
// importScripts("./pyodide.asm.js"); // if loading Pyodide after installation phase, you
→˓'ll need to import this too

let modifyData;
let pyodide;
loadPyodide({}).then((_pyodide) => {
pyodide = _pyodide;
let namespace = pyodide.globals.get("dict")();

pyodide.runPython(
`
import json

counter = 0
def modify_data(data):

global counter
counter += 1
dict = data.to_py()
dict['count'] = counter
return dict

`,
{ globals: namespace },

);

// assign the modify_data function from the Python context to a Javascript variable
modifyData = namespace.get("modify_data");

(continues on next page)

24 Chapter 3. Table of contents

https://web.dev/service-worker-lifecycle/

Pyodide, Release 0.26.0.dev0

(continued from previous page)

namespace.destroy();
});

self.addEventListener("fetch", (event) => {
if (event.request.url.endsWith("json")) {
if (!modifyData) {
// For this example, throw so it's clear that the worker isn't ready to modify␣

→˓responses
// This is because we don't want to return a response that isn't modified yet
// If your service worker would return the same response as a server (eg. it's just␣

→˓performing calculations closer to home)
// then you may want to let the event through without doing anything
event.respondWith(
Promise.reject("Python code isn't set up yet, try again in a bit"),

);
} else {
event.respondWith(
// We aren't using the async await syntax because event.respondWith needs to␣

→˓respond synchronously
// it can't be executing after an awaited promise within the fetch event handler,␣

→˓otherwise you'll get this
// Uncaught (in promise) DOMException: Failed to execute 'respondWith' on

→˓'FetchEvent': The event has already been responded to
fetch(event.request)
.then((v) => v.json())
.then((originalData) => {
let proxy = modifyData(originalData);
let pyproxies = [];

// Because toJs gives us a Map, we transform it to a plain Javascript object␣
→˓before changing it to JSON

let result = JSON.stringify(
Object.fromEntries(
proxy.toJs({
pyproxies,

}),
),

);
// Craft the new JSON response
return new Response(result, {
headers: { "Content-Type": "application/json" },

});
}),

);
}

}
});

// Code below is for easy iteration during development, you may want to remove or modify␣
→˓in a prod environment:

// Immediately become the active service worker once installed, so we don't have a stale␣
(continues on next page)

3.1. Using Pyodide 25

Pyodide, Release 0.26.0.dev0

(continued from previous page)

→˓service worker intercepting requests
// You can remove this code and achieve a similar thing by enabling "Update on Reload"␣
→˓in devtools, if supported:
// https://web.dev/service-worker-lifecycle/#update-on-reload
self.addEventListener("install", function () {

self.skipWaiting();
});

// With this, we won't need to reload the page before the service worker can intercept␣
→˓fetch requests
// https://developer.mozilla.org/en-US/docs/Web/API/Clients/claim#examples
self.addEventListener("activate", function (event) {
event.waitUntil(self.clients.claim());

});

Using module-type service workers

While classic-type service workers have better cross-browser compatibility at the moment, module-type service workers
make it easier to include external libraries in your service workers via ES module imports. There are environments
where we can safely assume ES module support in service workers, such as Chromium-based browser extensions’
background scripts. With the adjustments outlined below, you should be able to use our example with a module-type
service worker.

Setup

Serve pyodide.mjs instead of pyodide.js, the rest of the setup remains the same.

Consumers

We need to use different registration options on the consumer side. Replace this section of the script:

/* IF USING MODULE-TYPE SERVICE WORKER, REPLACE THESE OPTIONS */
const REGISTRATION_OPTIONS = {

scope: "/",
};

With the following:

const REGISTRATION_OPTIONS = {
scope: "/",
// Note that specifying the type option can cause errors if the browser doesn't support␣

→˓module-type service workers
type: "module",

};

26 Chapter 3. Table of contents

Pyodide, Release 0.26.0.dev0

Service worker

On the service worker side, we need to change the way we import scripts. Replace the importScripts calls shown below:

/* sw.js */
/* MODIFY IMPORT PATHS TO POINT TO YOUR SCRIPTS, REPLACE IF USING MODULE-TYPE WORKER */
// We're using the npm package xhr-shim, which assigns self.XMLHttpRequestShim
importScripts("./node_modules/xhr-shim/src/index.js");
self.XMLHttpRequest = self.XMLHttpRequestShim;
importScripts("./pyodide.js");
// importScripts("./pyodide.asm.js"); // if loading Pyodide after installation phase, you
→˓'ll need to import this too

With the following imports:

/* sw.js */
/* MODIFY IMPORT PATHS TO POINT TO YOUR SCRIPTS */
// We're using the npm package xhr-shim, which assigns self.XMLHttpRequestShim
import "./node_modules/xhr-shim/src/index.js";
self.XMLHttpRequest = self.XMLHttpRequestShim;
import "./pyodide.asm.js"; // IMPORTANT: This is compulsory in a module-type service␣
→˓worker, which cannot use importScripts
import { loadPyodide } from "./pyodide.mjs"; // Note the .mjs extension

Working with Bundlers

Webpack

There is a Pyodide Webpack Plugin to load Pyodide from a CDN in a Webpack project.

Vite

Note: The following instructions have been tested with Pyodide 0.25.0 and Vite 5.1.4.

If you have installed Pyodide via npm, you can use it in Vite as follows. First, the Pyodide npm package currently uses
node-fetch to load some files, which does not work in a browser; to resolve this, install the isomorphic-fetch
package so that Pyodide does not try to load node-fetch in the browser:

$ npm install --save isomorphic-fetch@^3

Then, exclude Pyodide from Vite’s dependency pre-bundling by setting optimizeDeps.exclude in your vite.
config.js file:

import { defineConfig } from "vite";

export default defineConfig({ optimizeDeps: { exclude: ["pyodide"] } });

You can test your setup with this index.html file:

3.1. Using Pyodide 27

https://github.com/pyodide/pyodide-webpack-plugin
https://www.npmjs.com/package/node-fetch
https://www.npmjs.com/package/isomorphic-fetch
https://vitejs.dev/guide/dep-pre-bundling.html

Pyodide, Release 0.26.0.dev0

<!doctype html>
<html>

<head>
<script type="module" src="/src/main.js"></script>

</head>
</html>

And this src/main.js file:

import { loadPyodide } from "pyodide";

async function hello_python() {
let pyodide = await loadPyodide();
return pyodide.runPythonAsync("1+1");

}

hello_python().then((result) => {
console.log("Python says that 1+1 =", result);

});

This should be sufficient for Vite dev mode:

$ npx vite

For a production build, you must also manually make sure that all Pyodide files will be available in dist/assets, by
first copying them to public/assets before building:

$ mkdir -p public/assets/
$ cp node_modules/pyodide/* public/assets/
$ npx vite build

Then you can view this production build to verify that it works:

$ npx vite preview

3.1.4 Loading packages

Only the Python standard library is available after importing Pyodide. To use other packages, you’ll need to load them
using either:

• micropip.install() (Python) for pure Python packages with wheels as well as Pyodide packages (including
Emscripten/wasm32 binary wheels). It can install packages from PyPI, the JsDelivr CDN or from other URLs.

• pyodide.loadPackage() (Javascript) for packages built with Pyodide. This is a function with less overhead
but also more limited functionality. micropip uses this function to load Pyodide packages. In most cases you
should be using micropip.

In some cases, and in particular in the REPL, packages are installed implicitly from imports. The Pyodide REPL uses
pyodide.loadPackagesFromImports() to automatically download all packages that the code snippet imports. This
is useful since users might import unexpected packages in REPL. At present, loadPackagesFromImports() will not
download packages from PyPI, it will only download packages included in the Pyodide distribution. See Packages built
in Pyodide to check the full list of packages included in Pyodide.

28 Chapter 3. Table of contents

https://micropip.pyodide.org/en/v0.2.2/project/api.html#micropip.install

Pyodide, Release 0.26.0.dev0

How to chose between micropip.install and pyodide.loadPackage?

While micropip.install() is written in Python and pyodide.loadPackage() in Javascript this has no incidence
on when to use each of these functions. Indeed, you can easily switch languages using the Type translations with,

• from Javascript,

let micropip = pyodide.pyimport(package_name);

• from Python,

import pyodide_js
await pyodide_js.loadPackage('package_name')

Instead, the general advice is to use micropip.install() for everything except in the following cases where
pyodide.loadPackage() might be more appropriate,

• to load micropip itself,

• when you are optimizing for size, do not want to install the micropip package, and do not need to install packages
from PyPI with dependency resolution.

Micropip

Installing packages

Pyodide supports installing following types of packages with micropip,

• pure Python wheels from PyPI with micropip.

• pure Python and binary wasm32/emscripten wheels (also informally known as “Pyodide packages” or “pack-
ages built by Pyodide”) from the JsDelivr CDN and custom URLs. micropip.install() is an async Python
function which returns a coroutine, so it need to be called with an await clause to run.

await pyodide.loadPackage("micropip");
const micropip = pyodide.pyimport("micropip");
await micropip.install('snowballstemmer');
pyodide.runPython(`
import snowballstemmer
stemmer = snowballstemmer.stemmer('english')
print(stemmer.stemWords('go goes going gone'.split()))

`);

Micropip implements file integrity validation by checking the hash of the downloaded wheel against pre-recorded hash
digests from the PyPI JSON API.

3.1. Using Pyodide 29

https://micropip.pyodide.org/en/v0.2.2/project/api.html#micropip.install
https://micropip.pyodide.org/en/v0.2.2/project/api.html#micropip.install
https://micropip.pyodide.org/en/v0.2.2/project/api.html#module-micropip
https://micropip.pyodide.org/en/v0.2.2/project/api.html#module-micropip
https://micropip.pyodide.org/en/v0.2.2/project/api.html#micropip.install

Pyodide, Release 0.26.0.dev0

Installing wheels from arbitrary URLs

Pure Python wheels can also be installed from any URL with micropip,

import micropip
micropip.install(

'https://example.com/files/snowballstemmer-2.0.0-py2.py3-none-any.whl'
)

Micropip decides whether a file is a URL based on whether it ends in “.whl” or not. The wheel name in the URL must
follow PEP 427 naming convention, which will be the case if the wheels is made using standard Python tools (pip
wheel, setup.py bdist_wheel). Micropip will also install the dependencies of the wheel. If dependency resolution
is not desired, you may pass deps=False.

Cross-Origin Resource Sharing (CORS)

If the file is on a remote server, the server must set Cross-Origin Resource Sharing (CORS) headers to allow access.
If the server doesn’t set CORS headers, you can use a CORS proxy. Note that using third-party CORS proxies has
security implications, particularly since we are not able to check the file integrity, unlike with installs from PyPI. See
this stack overflow answer for more information about CORS.

Example

<html>
<head>

<meta charset="utf-8" />
</head>
<body>

<script type="text/javascript" src="https://cdn.jsdelivr.net/pyodide/dev/full/
→˓pyodide.js"></script>

<script type="text/javascript">
async function main() {
let pyodide = await loadPyodide();
await pyodide.loadPackage("micropip");
const micropip = pyodide.pyimport("micropip");
await micropip.install("snowballstemmer");
await pyodide.runPython(`
import snowballstemmer
stemmer = snowballstemmer.stemmer('english')
print(stemmer.stemWords('go goes going gone'.split()))

`);
}
main();

</script>
</body>

</html>

30 Chapter 3. Table of contents

https://micropip.pyodide.org/en/v0.2.2/project/api.html#module-micropip
https://www.python.org/dev/peps/pep-0427/#file-format
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://stackoverflow.com/questions/43871637/no-access-control-allow-origin-header-is-present-on-the-requested-resource-whe/43881141#43881141

Pyodide, Release 0.26.0.dev0

Loading packages with pyodide.loadPackage()

Packages included in the official Pyodide repository can be loaded using loadPackage():

await pyodide.loadPackage("numpy");

It is also possible to load packages from custom URLs:

await pyodide.loadPackage(
"https://foo/bar/numpy-1.22.3-cp310-cp310-emscripten_3_1_13_wasm32.whl",

);

The file name must be a valid wheel name.

When you request a package from the official repository, all of the package’s dependencies are also loaded. There is
no dependency resolution when loading packages from custom URLs. If you want dependency resolution for custom
URLs, use micropip.

In general, loading a package twice is not permitted. However, one can override a dependency by loading a custom
URL with the same package name before loading the dependent package.

Multiple packages can also be loaded at the same time by passing a list to loadPackage().

await pyodide.loadPackage(["cycler", "pytz"]);

loadPackage() returns a Promise which resolves when all the packages are finished loading:

let pyodide;
async function main() {
pyodide = await loadPyodide();
await pyodide.loadPackage("matplotlib");
// matplotlib is now available

}
main();

Packages built in Pyodide

This is the list of Python packages included with the current version of Pyodide. These packages can be loaded with
pyodide.loadPackage() or micropip.install(). See Loading packages for information about loading packages.
Pure Python packages with wheels on PyPI can be loaded directly from PyPI with micropip.install().

Name Version
aiohttp 3.9.3
aiosignal 1.3.1
altair 5.2.0
annotated-types 0.6.0
asciitree 0.3.3
astropy 6.0.0
astropy_iers_data 0.2024.2.5.0.30.52
asttokens 2.4.1
async-timeout 4.0.3
atomicwrites 1.4.1
attrs 23.2.0

continues on next page

3.1. Using Pyodide 31

https://micropip.pyodide.org/en/v0.2.2/project/api.html#module-micropip
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://micropip.pyodide.org/en/v0.2.2/project/api.html#micropip.install
https://micropip.pyodide.org/en/v0.2.2/project/api.html#micropip.install

Pyodide, Release 0.26.0.dev0

Table 1 – continued from previous page
Name Version
autograd 1.6.2
awkward-cpp 31
b2d 0.7.4
bcrypt 4.1.2
beautifulsoup4 4.12.3
biopython 1.83
bitarray 2.9.2
bitstring 4.1.4
bleach 6.1.0
bokeh 3.4.0
boost-histogram 1.4.0
brotli 1.1.0
cachetools 5.3.2
Cartopy 0.22.0
cbor-diag 1.0.1
certifi 2024.2.2
cffi 1.16.0
cffi_example 0.1
cftime 1.6.3
charset-normalizer 3.3.2
clarabel 0.7.0
click 8.1.7
cligj 0.7.2
cloudpickle 3.0.0
cmyt 2.0.0
colorspacious 1.1.2
contourpy 1.2.1
coolprop 6.6.0
coverage 7.4.1
cramjam 2.8.1
cryptography 42.0.2
cssselect 1.2.0
cvxpy-base 1.5.0
cycler 0.12.1
cysignals 1.11.4
cytoolz 0.12.3
decorator 5.1.1
demes 0.2.3
deprecation 2.1.0
distlib 0.3.8
docutils 0.20.1
ewah_bool_utils 1.1.0
exceptiongroup 1.2.0
executing 2.0.1
fastparquet 2023.7.0
fiona 1.9.5
fonttools 4.48.1
freesasa 2.2.1
frozenlist 1.4.1
fsspec 2024.2.0

continues on next page

32 Chapter 3. Table of contents

Pyodide, Release 0.26.0.dev0

Table 1 – continued from previous page
Name Version
future 0.18.3
galpy 1.9.1
gensim 4.3.2
geopandas 0.14.3
gmpy2 2.1.5
gsw 3.6.17
h5py 3.10.0
html5lib 1.1
idna 3.6
igraph 0.11.3
imageio 2.33.1
iniconfig 2.0.0
ipython 8.22.2
jedi 0.19.1
Jinja2 3.1.3
joblib 1.3.2
jsonschema 4.21.1
jsonschema_specifications 2023.12.1
kiwisolver 1.4.5
lazy-object-proxy 1.10.0
lazy_loader 0.3
libcst 1.3.1
lightgbm 4.3.0
logbook 1.7.0.post0
lxml 5.1.0
MarkupSafe 2.1.5
matplotlib 3.5.2
matplotlib-inline 0.1.6
matplotlib-pyodide 0.2.1
memory-allocator 0.1.3
micropip 0.6.0
mmh3 4.1.0
mne 1.6.1
more-itertools 10.2.0
mpmath 1.3.0
msgpack 1.0.7
msgspec 0.18.6
msprime 1.3.0
multidict 6.0.5
munch 4.0.0
mypy 1.8.0
netcdf4 1.6.5
networkx 3.2.1
newick 1.9.0
nh3 0.2.15
nlopt 2.7.0
nltk 3.8.1
numcodecs 0.11.0
numpy 1.26.4
opencv-python 4.9.0.80

continues on next page

3.1. Using Pyodide 33

Pyodide, Release 0.26.0.dev0

Table 1 – continued from previous page
Name Version
optlang 1.8.1
orjson 3.9.13
packaging 23.2
pandas 2.2.0
parso 0.8.3
patsy 0.5.6
peewee 3.17.1
Pillow 10.2.0
pillow_heif 0.8.0
pkgconfig 1.5.5
pluggy 1.4.0
pplpy 0.8.9
primecountpy 0.1.0
prompt_toolkit 3.0.43
protobuf 4.24.4
pure_eval 0.2.2
py 1.11.0
pyclipper 1.3.0.post5
pycparser 2.21
pycryptodome 3.20.0
pydantic 2.6.1
pydantic_core 2.16.2
pyerfa 2.0.1.1
pygame-ce 2.4.1
Pygments 2.17.2
pyheif 0.7.1
pyiceberg 0.6.0
pyinstrument 4.4.0
pynacl 1.5.0
pyodide-http 0.2.1
pyparsing 3.1.1
pyproj 3.6.1
pyrsistent 0.20.0
pysam 0.22.0
pyshp 2.3.1
pytest 8.0.0
pytest-benchmark 4.0.0
python-dateutil 2.8.2
python-flint 0.6.0
python-magic 0.4.27
python-sat 1.8.dev12
python_solvespace 3.0.8
pytz 2024.1
pywavelets 1.5.0
pyxel 1.9.10
pyxirr 0.10.3
pyyaml 6.0.1
rebound 3.24.2
reboundx 3.10.1
referencing 0.33.0

continues on next page

34 Chapter 3. Table of contents

Pyodide, Release 0.26.0.dev0

Table 1 – continued from previous page
Name Version
regex 2023.12.25
requests 2.31.0
retrying 1.3.4
rich 13.7.1
river 0.19.0
RobotRaconteur 1.2.0
rpds-py 0.17.1
ruamel.yaml 0.18.6
rust-panic-test 1.0
scikit-image 0.22.0
scikit-learn 1.4.1.post1
scipy 1.12.0
screed 1.1.3
setuptools 69.0.3
shapely 2.0.2
simplejson 3.19.2
sisl 0.14.3
six 1.16.0
smart_open 6.4.0
sortedcontainers 2.4.0
soupsieve 2.5
sourmash 4.8.8
sparseqr 1.2
sqlalchemy 2.0.25
stack_data 0.6.3
statsmodels 0.14.1
strictyaml 1.7.3
svgwrite 1.4.3
swiglpk 5.0.10
sympy 1.12
tblib 3.0.0
termcolor 2.4.0
texttable 1.7.0
threadpoolctl 3.2.0
tomli 2.0.1
tomli-w 1.0.0
toolz 0.12.1
tqdm 4.66.1
traitlets 5.14.1
traits 6.4.3
tskit 0.5.6
typing-extensions 4.9.0
tzdata 2024.1
uncertainties 3.1.7
unyt 3.0.1
urllib3 2.2.0
wcwidth 0.2.13
webencodings 0.5.1
wordcloud 1.9.3
wrapt 1.16.0

continues on next page

3.1. Using Pyodide 35

Pyodide, Release 0.26.0.dev0

Table 1 – continued from previous page
Name Version
xarray 2024.1.1
xgboost 2.1.0.dev0
xlrd 2.0.1
xxhash 3.4.1
xyzservices 2023.10.1
yarl 1.9.4
yt 4.3.0
zarr 2.16.1
zengl 2.4.1

Using SDL-based packages in Pyodide

This is experimental

SDL support in Pyodide is experimental. Pyodide relies on undocumented behavior of Emscripten and SDL, so it may
break or change in the future.

In addition, this feature requires to enable an opt-in flag, pyodide._api._skip_unwind_fatal_error = true;
which can lead to stack unwinding issues (see Known issues).

Pyodide provides a way to use SDL-based packages in the browser, This document explains how to use SDL-based
packages in Pyodide.

Setting canvas

Before using SDL-based packages, you need to set the canvas to draw on.

The canvas object must be a HTMLCanvasElement object, with the id attribute set to "canvas". For example, you
can set a canvas like this:

let sdl2Canvas = document.createElement("canvas");
sdl2Canvas.id = "canvas";
pyodide.canvas.setCanvas2D(sdl2Canvas);

See also: pyodide.canvas

Working with infinite loop

It is common to use an infinite loop to draw animations or game scenes with SDL-based package.

For instance, a common code pattern in pygame (a SDL-based Python game library) is:

clock = pygame.time.Clock()
fps = 60
def run_game():

while True:
do_something()

(continues on next page)

36 Chapter 3. Table of contents

https://developer.mozilla.org/en-US/docs/Web/API/HTMLCanvasElement

Pyodide, Release 0.26.0.dev0

(continued from previous page)

draw_canvas()
clock.tick(fps)

However, in Pyodide, this will not work as expected, because the loop will block the main thread and prevent the browser
from updating the canvas. To work around this, you need to use async functions and yield control to the browser.

import asyncio

async def run_game():
while True:

do_something()
draw_canvas()
await asyncio.sleep(1 / fps)

Using asyncio.sleep will yield control to the browser and allow the canvas to be updated.

Known issues

There is a known issue that with,

pyodide._api._skip_unwind_fatal_error = true;

Python call stacks are not being unwound after calling emscripten_set_main_loop().

see: pyodide#3697

3.1.5 Pyodide Python compatibility

Python Standard library

Most of the Python standard library is functional, except for the modules listed in the sections below. A large part of
the CPython test suite passes except for tests skipped in src/tests/python_tests.yaml or via patches.

Optional modules

The following stdlib modules are unvendored by default, in order to reduce initial download size of Python distribution.
You can load all unvendored stdlib modules when initializing Pyodide with, loadPyodide({ fullStdLib : true
}). However this has a significant impact on the download size. Instead, it is better to load individual modules as
needed using pyodide.loadPackage() or micropip.install().

• ssl

• lzma

• sqlite3

• test: it is an exception to the above, since it is not loaded even if fullStdLib is set to true.

3.1. Using Pyodide 37

https://github.com/pyodide/pyodide/issues/3697
https://github.com/pyodide/pyodide/blob/main/src/tests/python_tests.yaml
https://github.com/pyodide/pyodide/tree/main/cpython/patches
https://micropip.pyodide.org/en/v0.2.2/project/api.html#micropip.install

Pyodide, Release 0.26.0.dev0

Modules with limited functionality

• hashlib: Hash algorithms that are depending on OpenSSL are not available by default. See Python hashlib
documentation for list of algorithms that are dependent on OpenSSL. If you need those algorithms, you need to
call pyodide.loadPackage('hashlib') or micropip.install('hashlib') before importing hashlib.

• decimal: The decimal module has C (_decimal) and Python (_pydecimal) implementations with the same func-
tionality. The Python implementation is not available by default. If you need a Python implementation of dec-
imal, you need to call pyodide.loadPackage('pydecimal') or micropip.install('pydecimal'), then
explicitly import _pydecimal.

• pydoc: Help messages for Python builtins are not available by default in order to reduce the initial download
size. You need to call pyodide.loadPackage('pydoc_data') or micropip.install('pydoc_data') to
enable them.

• webbrowser: The original webbrowser module is not available. Instead, Pyodide includes some method stubs
based on browser APIs: webbrowser.open(), webbrowser.open_new(), webbrowser.open_new_tab().

• zoneinfo: The zoneinfo package will only work if you install the timezone data using the tzdata package (i.e. by
calling pyodide.loadPackage("tzdata"))

Synchronous HTTP requests support

Packages for urllib3 and requests are included in pyodide. In browser, these function roughly the same as on other
operating systems with some limitations. In node.js, they are currently untested, they will require at least a polyfill for
synchronous XMLHttpRequest, and WebWorker.

The first limitation is that streaming download of files only works in very specific circumstances, which are that pyodide
has to be running in a web-worker, and it has to be on a cross-origin isolated website. If either of these conditions are
not met, it will do a non-streaming request, i.e. download the full request body before it returns from the initial request
call.

Secondly, all network calls are done via the browser. This means you are subject to the same limitations as any
JavaScript network call. This means you have very little or no control over certificates, timeouts, proxies and other
network related settings. You also are constrained by browser policies relating to cross-origin requests, sometimes
things will be blocked by CORS policies if the server doesn’t serve them with the correct headers.

Removed modules

The following modules are removed from the standard library to reduce download size and since they currently wouldn’t
work in the WebAssembly VM,

• curses

• dbm

• ensurepip

• fcntl

• grp

• idlelib

• lib2to3

• msvcrt

• pwd

38 Chapter 3. Table of contents

https://docs.python.org/3/library/hashlib.html
https://docs.python.org/3/library/hashlib.html

Pyodide, Release 0.26.0.dev0

• resource

• syslog

• termios

• tkinter

• turtle.py

• turtledemo

• venv

• winreg

• winsound

Included but not working modules

The following modules can be imported, but are not functional due to the limitations of the WebAssembly VM:

• multiprocessing

• threading

• sockets

as well as any functionality that requires these.

The following are present but cannot be imported due to a dependency on the termios package which has been removed:

• pty

• tty

3.1.6 Type translations

In order to communicate between Python and JavaScript, we “translate” objects between the two languages. Depending
on the type of the object we either translate the object by implicitly converting it or by proxying it. By “converting”
an object we mean producing a new object in the target language which is the equivalent of the object from the source
language, for example converting a Python string to the equivalent a JavaScript string. By “proxying” an object we
mean producing a special object in the target language that forwards requests to the source language. When we proxy
a JavaScript object into Python, the result is a JsProxy object. When we proxy a Python object into JavaScript,
the result is a PyProxy object. A proxied object can be explicitly converted using the explicit conversion methods
JsProxy.to_py() and PyProxy.toJs().

Python to JavaScript translations occur:

• when returning the final expression from a pyodide.runPython() call,

• when importing Python objects into JavaScript

• when passing arguments to a JavaScript function called from Python,

• when returning the results of a Python function called from JavaScript,

• when accessing an attribute of a PyProxy

JavaScript to Python translations occur:

• when importing from the js module

• when passing arguments to a Python function called from JavaScript

3.1. Using Pyodide 39

Pyodide, Release 0.26.0.dev0

• when returning the result of a JavaScript function called from Python

• when accessing an attribute of a JsProxy

Memory Leaks and Python to JavaScript translations

Any time a Python to JavaScript translation occurs, it may create a PyProxy. To avoid memory leaks, you must store
the PyProxy and destroy() it when you are done with it. See Calling Python objects from JavaScript for more info.

Round trip conversions

Translating an object from Python to JavaScript and then back to Python is guaranteed to give an object that is equal to
the original object. Furthermore, if the object is proxied into JavaScript, then translation back unwraps the proxy, and
the result of the round trip conversion is the original object (in the sense that they live at the same memory address).

Translating an object from JavaScript to Python and then back to JavaScript gives an object that is === to the original
object. Furthermore, if the object is proxied into Python, then translation back unwraps the proxy, and the result of the
round trip conversion is the original object (in the sense that they live at the same memory address). There are a few
exceptions:

1. NaN is converted to NaN after a round trip but NaN !== NaN,

2. null is converted to undefined after a round trip, and

3. a BigInt will be converted to a Number after a round trip unless its absolute value is greater than Number.
MAX_SAFE_INTEGER (i.e., 2^53).

Implicit conversions

We implicitly convert immutable types but not mutable types. This ensures that mutable Python objects can be modified
from JavaScript and vice-versa. Python has immutable types such as tuple and bytes that have no equivalent in
JavaScript. In order to ensure that round trip translations yield an object of the same type as the original object, we
proxy tuple and bytes objects.

Python to JavaScript

The following immutable types are implicitly converted from Python to JavaScript:

Python JavaScript
int Number or BigInt*
float Number
str String
bool Boolean
None undefined

* An int is converted to a Number if the absolute value is less than or equal to Number.MAX_SAFE_INTEGER otherwise
it is converted to a BigInt. (If the browser does not support BigInt then a Number will be used instead. In this case,
conversion of large integers from Python to JavaScript is lossy.)

40 Chapter 3. Table of contents

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/null
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/MAX_SAFE_INTEGER
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/MAX_SAFE_INTEGER
https://docs.python.org/3.11/library/stdtypes.html#tuple
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/stdtypes.html#tuple
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/functions.html#int
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt
https://docs.python.org/3.11/library/functions.html#float
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://docs.python.org/3.11/library/stdtypes.html#str
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://docs.python.org/3.11/library/functions.html#bool
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://docs.python.org/3.11/library/constants.html#None
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://docs.python.org/3.11/library/functions.html#int
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/MAX_SAFE_INTEGER
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number

Pyodide, Release 0.26.0.dev0

JavaScript to Python

The following immutable types are implicitly converted from JavaScript to Python:

JavaScript Python
Number int or float as appropriate*
BigInt int
String str
Boolean bool
undefined None
null None

* A Number is converted to an int if the absolute value is less than or equal to Number.MAX_SAFE_INTEGER and its
fractional part is zero. Otherwise, it is converted to a float.

Proxying

Any of the types not listed above are shared between languages using proxies that allow methods and some operations
to be called on the object from the other language.

Proxying from JavaScript into Python

When most JavaScript objects are translated into Python a JsProxy is returned. The following operations are currently
supported on a JsProxy:

Python JavaScript
str(proxy) x.toString()
repr(proxy) x.toString()
proxy.foo x.foo
proxy.foo = bar x.foo = bar
del proxy.foo delete x.foo
hasattr(proxy, "foo") "foo" in x
proxy(...) x(...)
proxy.foo(...) x.foo(...)
proxy.new(...) new X(...)
len(proxy) x.length or x.size
foo in proxy x.has(foo) or x.includes(foo)
proxy[foo] x.get(foo)
proxy[foo] = bar x.set(foo, bar)
del proxy[foo] x.delete(foo)
proxy1 == proxy2 x === y
proxy.typeof typeof x
iter(proxy) x[Symbol.iterator]()
next(proxy) x.next()
await proxy await x

Note that each of these operations is only supported if the proxied JavaScript object supports the corresponding oper-
ation. See the JsProxy API docs for the rest of the methods supported on JsProxy. Some other code snippets:

3.1. Using Pyodide 41

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#float
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt
https://docs.python.org/3.11/library/functions.html#int
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://docs.python.org/3.11/library/stdtypes.html#str
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://docs.python.org/3.11/library/functions.html#bool
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://docs.python.org/3.11/library/constants.html#None
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/null
https://docs.python.org/3.11/library/constants.html#None
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://docs.python.org/3.11/library/functions.html#int
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/MAX_SAFE_INTEGER
https://docs.python.org/3.11/library/functions.html#float

Pyodide, Release 0.26.0.dev0

for v in proxy:
do something

is equivalent to:

for (let v of x) {
// do something

}

The dir() method has been overloaded to return all keys on the prototype chain of x, so dir(x) roughly translates to:

function dir(x) {
let result = [];
do {
result.push(...Object.getOwnPropertyNames(x));

} while ((x = Object.getPrototypeOf(x)));
return result;

}

As a special case, JavaScript Array, HTMLCollection, and NodeList are container types, but instead of using array.
get(7) to get the 7th element, JavaScript uses array[7]. For these cases, we translate:

Python JavaScript
proxy[idx] array[idx]
proxy[idx] = val array[idx] = val
idx in proxy idx in array
del proxy[idx] array.splice(idx)

If you need to access the fields in a JavaScript object, you must use obj.field_name or if the name of the field
is not a valid Python identifier, getattr(obj, "field name"). If you want to access the fields of the object like
obj["field name"] you can use as_object_map():

from pyodide.code import run_js

obj = run_js(
"""
({
a: 7,
b: 9,
$c: 11

})
"""

)
obj_map = obj.as_object_map()
assert obj_map["$c"] == 11

Another special case comes from the fact that Python reserved words cannot be used as attributes. For instance, Array.
from() and Promise.finally() cannot be directly accessed because they are Python SyntaxErrors. Instead we
access these attributes with Array.from_ and Promise.finally_. Similarly, to access from Python, o.from_ you
have to use o.from__ with two underscores (since a single underscore is used for o.from). This is reflected in the
dir of a JsProxy:

42 Chapter 3. Table of contents

https://docs.python.org/3.11/library/functions.html#dir
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/API/HTMLCollection
https://developer.mozilla.org/en-US/docs/Web/API/NodeList
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/finally

Pyodide, Release 0.26.0.dev0

from pyodide.code import run_js
o = run_js("({finally: 1, return: 2, from: 3, from_: 4})")
assert set(dir(o)) == {"finally_", "return_", "from_", "from__"}

Proxying from Python into JavaScript

When most Python objects are translated to JavaScript a PyProxy is produced.

Fewer operations can be overloaded in JavaScript than in Python, so some operations are more cumbersome on a
PyProxy than on a JsProxy. The following operations are supported:

JavaScript Python
proxy.toString() str(x)
foo in proxy hasattr(x, 'foo')
proxy.foo x.foo
proxy.foo = bar x.foo = bar
delete proxy.foo del x.foo
Object.getOwnPropertyNames(proxy) dir(x)
proxy(...) x(...)
proxy.foo(...) x.foo(...)
proxy.length len(x)
proxy.has(foo) foo in x
proxy.get(foo) x[foo]
proxy.set(foo, bar) x[foo] = bar
proxy.delete(foo) del x[foo]
proxy.type type(x)
proxy[Symbol.iterator]() iter(x)
proxy.next() next(x)
await proxy await x

Memory Leaks and PyProxy

Make sure to destroy PyProxies when you are done with them to avoid memory leaks.

let foo = pyodide.globals.get('foo');
foo();
foo.destroy();
foo(); // throws Error: Object has already been destroyed

3.1. Using Pyodide 43

Pyodide, Release 0.26.0.dev0

Explicit Conversion of Proxies

Python to JavaScript

Explicit conversion of a PyProxy into a native JavaScript object is done with the toJs()method. You can also perform
such a conversion in Python using to_js() which behaves in much the same way. By default, the toJs() method
does a recursive “deep” conversion, to do a shallow conversion use proxy.toJs({depth : 1}). In addition to the
normal type conversion, the toJs() method performs the following explicit conversions:

Python JavaScript
list, tuple Array
dict Map
set Set
a buffer* TypedArray

* Examples of buffers include bytes objects and numpy Array objects.

If you need to convert dict instead to Object, you can pass Object.fromEntries() as the dict_converter
argument: proxy.toJs({dict_converter : Object.fromEntries}).

In JavaScript, Map and Set keys are compared using object identity unless the key is an immutable type (meaning a
String, a Number, a BigInt, a Boolean, undefined, or null). On the other hand, in Python, dict and set keys
are compared using deep equality. If a key is encountered in a dict or set that would have different semantics in
JavaScript than in Python, then a ConversionError will be thrown.

See Using Python Buffer objects from JavaScript for the behavior of toJs() on buffers.

Memory Leaks and toJs

The toJs()method can create many proxies at arbitrary depth. It is your responsibility to manually destroy() these
proxies if you wish to avoid memory leaks. The pyproxies argument to toJs() is designed to help with this:

let pyproxies = [];
proxy.toJs({pyproxies});
// Do stuff
// pyproxies contains the list of proxies created by `toJs`. We can destroy them
// when we are done with them
for(let px of pyproxies){

px.destroy();
}
proxy.destroy();

As an alternative, if you wish to assert that the object should be fully converted and no proxies should be created, you
can use proxy.toJs({create_proxies : false}). If a proxy would be created, a ConversionError is raised
instead.

44 Chapter 3. Table of contents

https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/stdtypes.html#tuple
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://docs.python.org/3.11/library/stdtypes.html#dict
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://docs.python.org/3.11/library/stdtypes.html#set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set
https://docs.python.org/3.11/c-api/buffer.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://numpy.org/doc/stable/reference/arrays.html#arrays
https://docs.python.org/3.11/library/stdtypes.html#dict
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/fromEntries
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/null
https://docs.python.org/3.11/library/stdtypes.html#dict
https://docs.python.org/3.11/library/stdtypes.html#set
https://docs.python.org/3.11/library/stdtypes.html#dict
https://docs.python.org/3.11/library/stdtypes.html#set

Pyodide, Release 0.26.0.dev0

JavaScript to Python

Explicit conversion of a JsProxy into a native Python object is done with the JsProxy.to_py()method. By default,
the to_py() method does a recursive “deep” conversion, to do a shallow conversion use proxy.to_py(depth=1).
The to_py() method performs the following explicit conversions:

JavaScript Python
Array list
Object* dict
Map dict
Set set

* to_py() will only convert an Object into a dictionary if its constructor is Object, otherwise the object will be left
alone. Example:

class Test {};
window.x = { "a" : 7, "b" : 2};
window.y = { "a" : 7, "b" : 2};
Object.setPrototypeOf(y, Test.prototype);
pyodide.runPython(`

from js import x, y
x is converted to a dictionary
assert x.to_py() == { "a" : 7, "b" : 2}
y is not a "Plain Old JavaScript Object", it's an instance of type Test so it's not␣

→˓converted
assert y.to_py() == y

`);

In JavaScript, Map and Set keys are compared using object identity unless the key is an immutable type (meaning a
String, a Number, a BigInt, a Boolean, undefined, or null). On the other hand, in Python, dict and set keys are
compared using deep equality. If a key is encountered in a Map or Set that would have different semantics in Python
than in JavaScript, then a ConversionError will be thrown. Also, in JavaScript, true !== 1 and false !== 0,
but in Python, True == 1 and False == 0. This has the result that a JavaScript map can use true and 1 as distinct
keys but a Python dict cannot. If the JavaScript map contains both true and 1 a ConversionError will be thrown.

Functions

Calling Python objects from JavaScript

If a Python object is callable, the proxy will be callable too. The arguments will be translated from JavaScript to Python
as appropriate, and the return value will be translated from JavaScript back to Python. If the return value is a PyProxy,
you must explicitly destroy it or else it will be leaked.

An example:

let test = pyodide.runPython(`
def test(x):

return [n*n for n in x]
test

`);
let result_py = test([1,2,3,4]);

(continues on next page)

3.1. Using Pyodide 45

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://docs.python.org/3.11/library/stdtypes.html#list
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object
https://docs.python.org/3.11/library/stdtypes.html#dict
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://docs.python.org/3.11/library/stdtypes.html#dict
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set
https://docs.python.org/3.11/library/stdtypes.html#set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/null
https://docs.python.org/3.11/library/stdtypes.html#dict
https://docs.python.org/3.11/library/stdtypes.html#set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set
https://docs.python.org/3.11/library/stdtypes.html#dict

Pyodide, Release 0.26.0.dev0

(continued from previous page)

// result_py is a PyProxy of a list.
let result_js = result_py.toJs();
// result_js is the array [1, 4, 9, 16]
result_py.destroy();

If a function is intended to be used from JavaScript, you can use to_js() on the return value. This prevents the return
value from leaking without requiring the JavaScript code to explicitly destroy it. This is particularly important for
callbacks.

let test = pyodide.runPython(`
from pyodide.ffi import to_js
def test(x):

return to_js([n*n for n in x])
test

`);
let result = test([1,2,3,4]);
// result is the array [1, 4, 9, 16], nothing needs to be destroyed.

If you need to use a key word argument, use callKwargs(). The last argument should be a JavaScript object with the
key value arguments.

let test = pyodide.runPython(`
from pyodide.ffi import to_js
def test(x, *, offset):

return to_js([n*n + offset for n in x])
to_js(test)

`);
let result = test.callKwargs([1,2,3,4], { offset : 7});
// result is the array [8, 12, 16, 23]

Calling JavaScript functions from Python

What happens when calling a JavaScript function from Python is a bit more complicated than calling a Python function
from JavaScript. If there are any keyword arguments, they are combined into a JavaScript object and used as the final
argument. Thus, if you call:

f(a=2, b=3)

then the JavaScript function receives one argument which is a JavaScript object {a : 2, b : 3}.

When a JavaScript function is called, if the return value not a Promise, a Generator, or an AsyncGenerator, any
arguments that are PyProxies that were created in the process of argument conversion are also destroyed. If the result
is a PyProxy it is also destroyed.

As a result of this, if a PyProxy is persisted to be used later, then it must either be copied using copy() in JavaScript,
or it must be created with create_proxy() or create_once_callable(). If it’s only going to be called once use
create_once_callable():

from pyodide.ffi import create_once_callable
from js import setTimeout
def my_callback():

print("hi")
setTimeout(create_once_callable(my_callback), 1000)

46 Chapter 3. Table of contents

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/AsyncGenerator

Pyodide, Release 0.26.0.dev0

If it’s going to be called many times use create_proxy():

from pyodide.ffi import create_proxy
from js import document
def my_callback():

print("hi")
proxy = create_proxy(my_callback)
document.body.addEventListener("click", proxy)
...
make sure to hold on to proxy
document.body.removeEventListener("click", proxy)
proxy.destroy()

When a JavaScript function returns a Promise (for example, if the function is an async function), it is assumed that
the Promise is going to do some work that uses the arguments of the function, so it is not safe to destroy them until the
Promise resolves. In this case, the proxied function returns a Python Future instead of the original Promise. When
the Promise resolves, the result is converted to Python and the converted value is used to resolve the Future. Then
if the result is a PyProxy it is destroyed. Any PyProxies created in converting the arguments are also destroyed at this
point.

Similarly, if the return value is a Generator or AsyncGenerator, then the arguments (and all values sent to the
generator) are kept alive until it is exhausted, or until close() is called.

Buffers

Using JavaScript Typed Arrays from Python

JavaScript ArrayBuffer and TypedArray objects are proxied into Python. Python can’t directly access arrays if they
are outside the WASM heap, so it’s impossible to directly use these proxied buffers as Python buffers. You can convert
such a proxy to a Python memoryview using the to_py() api. This makes it easy to correctly convert the array to a
Numpy array using numpy.asarray():

self.jsarray = new Float32Array([1,2,3, 4, 5, 6]);
pyodide.runPython(`

from js import jsarray
array = jsarray.to_py()
import numpy as np
numpy_array = np.asarray(array).reshape((2,3))
print(numpy_array)

`);

After manipulating numpy_array you can assign the value back to jsarray using assign():

pyodide.runPython(`
numpy_array[1,1] = 77
jsarray.assign(a)

`);
console.log(jsarray); // [1, 2, 3, 4, 77, 6]

The assign() and assign_to() methods can be used to assign a JavaScript buffer from / to a Python buffer which
is appropriately sized and contiguous. The assignment methods will only work if the data types match, the total length
of the buffers match, and the Python buffer is contiguous.

3.1. Using Pyodide 47

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://docs.python.org/3.11/library/asyncio-future.html#asyncio.Future
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://docs.python.org/3.11/library/asyncio-future.html#asyncio.Future
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/AsyncGenerator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
https://docs.python.org/3.11/library/stdtypes.html#memoryview
https://numpy.org/doc/stable/reference/generated/numpy.asarray.html#numpy.asarray

Pyodide, Release 0.26.0.dev0

Using Python Buffer objects from JavaScript

Python objects supporting the Python Buffer protocol are proxied into JavaScript. The data inside the buffer can be ac-
cessed via the toJs()method or the getBuffer()method. The toJs()API copies the buffer into JavaScript, whereas
the getBuffer() method allows low level access to the WASM memory backing the buffer. The getBuffer() API
is more powerful but requires care to use correctly. For simple use cases the toJs() API should be preferred.

If the buffer is zero or one-dimensional, then toJs() will in most cases convert it to a single TypedArray. However,
in the case that the format of the buffer is 's', we will convert the buffer to a string and if the format is '?' we will
convert it to an Array of booleans.

If the dimension is greater than one, we will convert it to a nested JavaScript array, with the innermost dimension
handled in the same way we would handle a 1d array.

An example of a case where you would not want to use the toJs() method is when the buffer is bitmapped image
data. If for instance you have a 3d buffer shaped 1920 x 1080 x 4, then toJs() will be extremely slow. In this case
you could use getBuffer(). On the other hand, if you have a 3d buffer shaped 1920 x 4 x 1080, the performance of
toJs() will most likely be satisfactory. Typically, the innermost dimension won’t matter for performance.

The getBuffer()method can be used to retrieve a reference to a JavaScript typed array that points to the data backing
the Python object, combined with other metadata about the buffer format. The metadata is suitable for use with a
JavaScript ndarray library if one is present. For instance, if you load the JavaScript ndarray package, you can do:

let proxy = pyodide.globals.get("some_numpy_ndarray");
let buffer = proxy.getBuffer();
proxy.destroy();
try {
if (buffer.readonly) {
// We can't stop you from changing a readonly buffer, but it can cause undefined␣

→˓behavior.
throw new Error("Uh-oh, we were planning to change the buffer");

}
let array = new ndarray(
buffer.data,
buffer.shape,
buffer.strides,
buffer.offset,

);
// manipulate array here
// changes will be reflected in the Python ndarray!

} finally {
buffer.release(); // Release the memory when we're done

}

Errors

All entrypoints and exit points from Python code are wrapped in JavaScript try blocks. At the boundary between
Python and JavaScript, errors are caught, converted between languages, and rethrown.

JavaScript errors are wrapped in a JsException. Python exceptions are converted to a PythonError. At present if
an exception crosses between Python and JavaScript several times, the resulting error message won’t be as useful as
one might hope.

In order to reduce memory leaks, the PythonError has a formatted traceback, but no reference to the original Python
exception. The original exception has references to the stack frame and leaking it will leak all the local variables from

48 Chapter 3. Table of contents

https://docs.python.org/3/c-api/buffer.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://github.com/scijs/ndarray

Pyodide, Release 0.26.0.dev0

that stack frame. The actual Python exception will be stored in sys.last_value so if you need access to it (for instance
to produce a traceback with certain functions filtered out), use that.

Be careful Proxying Stack Frames

If you make a PyProxy of sys.last_value, you should be especially careful to destroy() it when you are done
with it, or you may leak a large amount of memory if you don’t.

The easiest way is to only handle the exception in Python:

pyodide.runPython(`
def reformat_exception():

from traceback import format_exception
Format a modified exception here
this just prints it normally but you could for instance filter some frames
return "".join(

format_exception(sys.last_type, sys.last_value, sys.last_traceback)
)

`);
let reformat_exception = pyodide.globals.get("reformat_exception");
try {

pyodide.runPython(some_code);
} catch(e){

// replace error message
e.message = reformat_exception();
throw e;

}

Importing Objects

It is possible to access objects in one language from the global scope in the other language. It is also possible to create
custom namespaces and access objects on the custom namespaces.

Importing Python objects into JavaScript

A Python global variable in the __main__ global scope can be imported into JavaScript using the pyodide.globals.
get()method. Given the name of the Python global variable, it returns the value of the variable translated to JavaScript.

let x = pyodide.globals.get("x");

As always, if the result is a PyProxy and you care about not leaking the Python object, you must destroy it when you
are done. It’s also possible to set values in the Python global scope with pyodide.globals.set() or remove them
with pyodide.globals.delete():

pyodide.globals.set("x", 2);
pyodide.runPython("print(x)"); // Prints 2

If you execute code with a custom globals dictionary, you can use a similar approach:

let my_py_namespace = pyodide.globals.get("dict")();
pyodide.runPython("x=2", my_py_namespace);
let x = my_py_namespace.get("x");

3.1. Using Pyodide 49

https://docs.python.org/3.11/library/sys.html#sys.last_value
https://docs.python.org/3.11/library/sys.html#sys.last_value

Pyodide, Release 0.26.0.dev0

To access a Python module from JavaScript, use pyimport():

let sys = pyodide.pyimport("sys");

Importing JavaScript objects into Python

JavaScript objects in the globalThis global scope can be imported into Python using the js module.

When importing a name from the js module, the js module looks up JavaScript attributes of the globalThis scope
and translates the JavaScript objects into Python.

import js
js.document.title = 'New window title'
from js.document.location import reload as reload_page
reload_page()

You can also assign to JavaScript global variables in this way:

pyodide.runPython("js.x = 2");
console.log(window.x); // 2

You can create your own custom JavaScript modules using pyodide.registerJsModule() and they will behave like
the js module except with a custom scope:

let my_js_namespace = { x : 3 };
pyodide.registerJsModule("my_js_namespace", my_js_namespace);
pyodide.runPython(`

from my_js_namespace import x
print(x) # 3
my_js_namespace.y = 7

`);
console.log(my_js_namespace.y); // 7

If the JavaScript object’s name is a reserved Python keyword, the getattr() function can be used to access the object
by name within the js module::

lambda = (x) => {return x + 1};
//'from js import lambda' will cause a Syntax Error, since 'lambda' is a Python reserved␣
→˓keyword. Instead:
pyodide.runPython(`

import js
js_lambda = getattr(js, 'lambda')
print(js_lambda(1))
`);

If a JavaScript object has a property that is a reserved Python keyword, the setattr() and getattr() function can
be used to access that property by name:

people = {global: "lots and lots"};
//Trying to access 'people.global' will raise a Syntax Error, since 'global' is a Python␣
→˓reserved keyword. Instead:
pyodide.runPython(`

from js import people
(continues on next page)

50 Chapter 3. Table of contents

https://docs.python.org/3.11/library/functions.html#getattr
https://docs.python.org/3.11/library/functions.html#setattr
https://docs.python.org/3.11/library/functions.html#getattr

Pyodide, Release 0.26.0.dev0

(continued from previous page)

setattr(people, 'global', 'even more')
print(getattr(people, 'global'))
`);

3.1.7 Interrupting execution

The native Python interrupt system is based on preemptive multitasking but Web Assembly has no support for pre-
emptive multitasking. Because of this, interrupting execution in Pyodide must be achieved via a different mechanism
which takes some effort to set up.

Setting up interrupts

In order to use interrupts you must be using Pyodide in a webworker. You also will need to use a SharedArrayBuffer,
which means that your server must set appropriate security headers. See the MDN docs for more information.

To use the interrupt system, you should create a SharedArrayBuffer on either the main thread or the worker thread
and share it with the other thread. You should use pyodide.setInterruptBuffer() to set the interrupt buffer on
the Pyodide thread. When you want to indicate an interrupt, write a 2 into the interrupt buffer. When the interrupt
signal is processed, Pyodide will set the value of the interrupt buffer back to 0.

By default, when the interrupt fires, a KeyboardInterrupt is raised. Using the signal module, it is possible to
register a custom Python function to handle SIGINT. If you register a custom handler function it will be called instead.

Here is a very basic example. Main thread code:

let pyodideWorker = new Worker("pyodideWorker.js");
let interruptBuffer = new Uint8Array(new SharedArrayBuffer(1));
pyodideWorker.postMessage({ cmd: "setInterruptBuffer", interruptBuffer });
function interruptExecution() {
// 2 stands for SIGINT.
interruptBuffer[0] = 2;

}
// imagine that interruptButton is a button we want to trigger an interrupt.
interruptButton.addEventListener("click", interruptExecution);
async function runCode(code) {
// Clear interruptBuffer in case it was accidentally left set after previous code␣

→˓completed.
interruptBuffer[0] = 0;
pyodideWorker.postMessage({ cmd: "runCode", code });

}

Worker code:

self.addEventListener("message", (msg) => {
if (msg.data.cmd === "setInterruptBuffer") {
pyodide.setInterruptBuffer(msg.data.interruptBuffer);
return;

}
if (msg.data.cmd === "runCode") {
pyodide.runPython(msg.data.code);
return;

(continues on next page)

3.1. Using Pyodide 51

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer#security_requirements
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://docs.python.org/3.11/library/exceptions.html#KeyboardInterrupt
https://docs.python.org/3.11/library/signal.html#module-signal
https://docs.python.org/3.11/library/signal.html#signal.SIGINT

Pyodide, Release 0.26.0.dev0

(continued from previous page)

}
});

Allowing JavaScript code to be interrupted

The interrupt system above allows interruption of Python code and also of C code that allows itself to be interrupted
by periodically calling PyErr_CheckSignals(). There is also a function pyodide.checkInterrupt() that allows
JavaScript functions called from Python to check for an interrupt. As a simple example, we can implement an inter-
ruptible sleep function using Atomics.wait():

let blockingSleepBuffer = new Int32Array(new SharedArrayBuffer(4));
function blockingSleep(t) {
for (let i = 0; i < t * 20; i++) {
// This Atomics.wait call blocks the thread until the buffer changes or a 50ms␣

→˓timeout elapses.
// Since we won't change the value in the buffer, this blocks for 50ms.
Atomics.wait(blockingSleepBuffer, 0, 0, 50);
// Periodically check for an interrupt to allow a KeyboardInterrupt.
pyodide.checkInterrupt();

}
}

3.1.8 Redirecting standard streams

Pyodide has three functions pyodide.setStdin(), pyodide.setStdout(), and pyodide.setStderr() that
change the behavior of reading from stdin and writing to stdout and stderr respectively.

Standard Input

pyodide.setStdin() sets the standard in handler. There are several different ways to do this depending on the options
passed to setStdin.

Always raise IO Error

If we pass {error: true}, any read from stdin raises an I/O error.

pyodide.setStdin({ error: true });
pyodide.runPython(`

with pytest.raises(OSError, match="I/O error"):
input()

`);

52 Chapter 3. Table of contents

https://docs.python.org/3.11/c-api/exceptions.html#c.PyErr_CheckSignals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Atomics/wait
https://docs.python.org/3.11/library/sys.html#sys.stdin
https://docs.python.org/3.11/library/sys.html#sys.stdout
https://docs.python.org/3.11/library/sys.html#sys.stderr

Pyodide, Release 0.26.0.dev0

Set the default behavior

You can set the default behavior by calling pyodide.setStdin() with no arguments. In Node the default behavior is
to read directly from Node’s standard input. In the browser, the default is the same as pyodide.setStdin({ stdin:
() => prompt() }).

A stdin handler

We can pass the options {stdin, isatty}. stdin should be a zero-argument function which should return one of:

1. A string which represents a full line of text (it will have a newline appended if it does not already end in one).

2. An array buffer or Uint8Array containing utf8 encoded characters

3. A number between 0 and 255 which indicates one byte of input

4. undefined or null which indicates EOF.

isatty is a boolean which indicates whether sys.stdin.isatty() should return true or false.

For example, the following class plays back a list of results.

class StdinHandler {
constructor(results, options) {
this.results = results;
this.idx = 0;
Object.assign(this, options);

}

stdin() {
return this.results[this.idx++];

}
}

Here it is in use:

pyodide.setStdin(
new StdinHandler(["a", "bcd", "efg"]),

);
pyodide.runPython(`

assert input() == "a"
assert input() == "bcd"
assert input() == "efg"
after this, further attempts to read from stdin will return undefined which
indicates end of file
with pytest.raises(EOFError, match="EOF when reading a line"):

input()
`);

Note that the input() function automatically reads a line of text and removes the trailing newline. If we use sys.
stdin.read we see that newlines have been appended to strings that don’t end in a newline:

pyodide.setStdin(
new StdinHandler(["a", "bcd\n", "efg", undefined, "h", "i"]),

);
(continues on next page)

3.1. Using Pyodide 53

Pyodide, Release 0.26.0.dev0

(continued from previous page)

pyodide.runPython(String.raw`
import sys
assert sys.stdin.read() == "a\nbcd\nefg\n"
assert sys.stdin.read() == "h\ni\n"

`);

Instead of strings we can return the list of utf8 bytes for the input:

pyodide.setStdin(
new StdinHandler(
[0x61 /* a */, 0x0a /* \n */, 0x62 /* b */, 0x63 /* c */],
true,

),
);
pyodide.runPython(`

assert input() == "a"
assert input() == "bc"

`);

Or we can return a Uint8Array with the utf8-encoded text that we wish to render:

pyodide.setStdin(
new StdinHandler([new Uint8Array([0x61, 0x0a, 0x62, 0x63])]),

);
pyodide.runPython(`

assert input() == "a"
assert input() == "bc"

`);

A read handler

A read handler takes a Uint8Array as an argument and is supposed to place the data into this buffer and return the
number of bytes read. This is useful in Node. For example, the following class can be used to read from a Node file
descriptor:

const fs = require("fs");
const tty = require("tty");
class NodeReader {
constructor(fd) {
this.fd = fd;
this.isatty = tty.isatty(fd);

}

read(buffer) {
return fs.readSync(this.fd, buffer);

}
}

For instance to set stdin to read from a file called input.txt, we can do the following:

const fd = fs.openSync("input.txt", "r");
py.setStdin(new NodeReader(fd));

54 Chapter 3. Table of contents

Pyodide, Release 0.26.0.dev0

Or we can read from node’s stdin (the default behavior) as follows:

fd = fs.openSync("/dev/stdin", "r");
py.setStdin(new NodeReader(fd));

isatty

It is possible to control whether or not sys.stdin.isatty() returns true with the isatty option:

pyodide.setStdin(new StdinHandler([], {isatty: true}));
pyodide.runPython(`

import sys
assert sys.stdin.isatty() # returns true as we requested

`);
pyodide.setStdin(new StdinHandler([], {isatty: false}));
pyodide.runPython(`
assert not sys.stdin.isatty() # returns false as we requested

`);

This will change the behavior of cli applications that behave differently in an interactive terminal, for example pytest
does this.

Raising IO errors

To raise an IO error in either a stdin or read handler, you should throw an IO error as follows:

throw new pyodide.FS.ErrnoError(pyodide.ERRNO_CODES.EIO);

for instance, saying:

pyodide.setStdin({
read(buf) {
throw new pyodide.FS.ErrnoError(pyodide.ERRNO_CODES.EIO);

},
});

is the same as pyodide.setStdin({error: true}).

Handling Keyboard interrupts

To handle a keyboard interrupt in an input handler, you should periodically call pyodide.checkInterrupt(). For
example, the following stdin handler always raises a keyboard interrupt:

const interruptBuffer = new Int32Array(new SharedArrayBuffer(4));
pyodide.setInterruptBuffer(interruptBuffer);
pyodide.setStdin({
read(buf) {
// Put signal into interrupt buffer
interruptBuffer[0] = 2;
// Call checkInterrupt to raise an error
pyodide.checkInterrupt();

(continues on next page)

3.1. Using Pyodide 55

https://docs.python.org/3.11/library/io.html#io.IOBase.isatty

Pyodide, Release 0.26.0.dev0

(continued from previous page)

console.log(
"This code won't ever be executed because pyodide.checkInterrupt raises an error!",

);
},

});

For a more realistic example that handles reading stdin in a worker and also keyboard interrupts, you might something
like the following code:

pyodide.setStdin({read(buf) {
const timeoutMilliseconds = 100;
while(true) {
switch(Atomics.wait(stdinSharedBuffer, 0, 0, timeoutMilliseconds) {
case "timed-out":
// 100 ms passed but got no data, check for keyboard interrupt then return to␣

→˓waiting on data.
pyodide.checkInterrupt();
break;

case "ok":
// ... handle the data somehow
break;

}
}

}});

See also Interrupting execution.

Standard Out / Standard Error

pyodide.setStdout() and pyodide.setStderr() respectively set the standard output and standard error handlers.
These APIs are identical except in their defaults, so we will only discuss the pyodide.setStdout except in cases where
they differ.

As with pyodide.setStdin(), there are quite a few different ways to set the standard output handlers.

Set the default behavior

As with stdin, pyodide.setStdout() sets the default behavior. In node, this is to write directly to process.stdout.
In the browser, the default is as if you wrote setStdout({batched: (str) => console.log(str)}) see below.

A batched handler

A batched handler is the easiest standard out handler to implement but it is also the coarsest. It is intended to use with
APIs like console.log that don’t understand partial lines of text or for quick and dirty code.

The batched handler receives a string which is either:

1. a complete line of text with the newline removed or

2. a partial line of text that was flushed.

For instance after:

56 Chapter 3. Table of contents

Pyodide, Release 0.26.0.dev0

print("hello!")
import sys
print("partial line", end="")
sys.stdout.flush()

the batched handler is called with "hello!" and then with "partial line". Note that there is no indication that
"hello!" was a complete line of text and "partial line" was not.

A raw handler

A raw handler receives the output one character code at a time. This is neither very convenient nor very efficient. It is
present primarily for backwards compatibility reasons.

For example, the following code:

print("h")
import sys
print("p ", end="")
print("l", end="")
sys.stdout.flush()

will call the raw handler with the sequence of bytes:

0x68 - h
0x0A - newline
0x70 - p
0x20 - space
0x6c - l

A write handler

A write handler takes a Uint8Array as an argument and is supposed to write the data in this buffer to standard output
and return the number of bytes written. For example, the following class can be used to write to a Node file descriptor:

const fs = require("fs");
const tty = require("tty");
class NodeWriter {
constructor(fd) {
this.fd = fd;
this.isatty = tty.isatty(fd);

}

write(buffer) {
return fs.writeSync(this.fd, buffer);

}
}

Using it as follows redirects output from Pyodide to out.txt:

const fd = fs.openSync("out.txt", "w");
py.setStdout(new NodeWriter(fd));

3.1. Using Pyodide 57

Pyodide, Release 0.26.0.dev0

Or the following gives the default behavior:

const fd = fs.openSync("out.txt", "w");
py.setStdout(new NodeWriter(process.stdout.fd));

isatty

As with stdin, is possible to control whether or not sys.stdout.isatty() returns true with the isatty option.
You cannot combine isatty: true with a batched handler.

3.1.9 API Reference

JavaScript API

Backward compatibility of the API is not guaranteed at this point.

Globals

Functions:

async loadPyodide(options) Load the main Pyodide wasm module and initialize it.

async globalThis.loadPyodide(options)
Load the main Pyodide wasm module and initialize it.

Arguments

• options.indexURL (string) – The URL from which Pyodide will load the main Pyodide
runtime and packages. It is recommended that you leave this unchanged, providing an incor-
rect value can cause broken behavior. Default: The url that Pyodide is loaded from with the
file name (pyodide.js or pyodide.mjs) removed.

• options.packageCacheDir (string) – The file path where packages will be cached in
node. If a package exists in packageCacheDir it is loaded from there, otherwise it is down-
loaded from the JsDelivr CDN and then cached into packageCacheDir. Only applies when
running in node; ignored in browsers. Default: same as indexURL

• options.lockFileURL (string) – The URL from which Pyodide will load the Pyo-
dide pyodide-lock.json lock file. You can produce custom lock files with micropip.
freeze(). Default: `${indexURL}/pyodide-lock.json`

• options.fullStdLib (boolean) – Load the full Python standard library. Setting this to
false excludes unvendored modules from the standard library. Default: false

• options.stdLibURL (string) – The URL from which to load the standard library
python_stdlib.zip file. This URL includes the most of the Python standard library. Some
stdlib modules were unvendored, and can be loaded separately with fullStdLib: true
option or by their package name. Default: `${indexURL}/python_stdlib.zip`

• options.stdin (() => string) – Override the standard input callback. Should ask the user
for one line of input. The pyodide.setStdin() function is more flexible and should be
preferred.

58 Chapter 3. Table of contents

https://docs.python.org/3.11/library/io.html#io.IOBase.isatty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://micropip.pyodide.org/en/v0.2.2/project/api.html#micropip.freeze
https://micropip.pyodide.org/en/v0.2.2/project/api.html#micropip.freeze
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

Pyodide, Release 0.26.0.dev0

• options.stdout ((msg: string) => void) – Override the standard output callback. The
pyodide.setStdout() function is more flexible and should be preferred in most cases,
but depending on the args passed to loadPyodide, Pyodide may write to stdout on startup,
which can only be controlled by passing a custom stdout function.

• options.stderr ((msg: string) => void) – Override the standard error output callback.
The pyodide.setStderr() function is more flexible and should be preferred in most cases,
but depending on the args passed to loadPyodide, Pyodide may write to stdout on startup,
which can only be controlled by passing a custom stdout function.

• options.jsglobals (object) – The object that Pyodide will use for the js module. De-
fault: globalThis

• options.args (string[]) – Command line arguments to pass to Python on startup. See
Python command line interface options for more details. Default: []

• options.env ({ [key: string]: string; }) – Environment variables to pass to Python.
This can be accessed inside of Python at runtime via os.environ. Certain environment vari-
ables change the way that Python loads: https://docs.python.org/3.10/using/cmdline.html#
environment-variables Default: {}. If env.HOME is undefined, it will be set to a default value
of "/home/pyodide"

• options.packages (string[]) – A list of packages to load as Pyodide is initializing. This
is the same as loading the packages with pyodide.loadPackage() after Pyodide is loaded
except using the packages option is more efficient because the packages are downloaded
while Pyodide bootstraps itself.

• options.pyproxyToStringRepr (boolean) – Opt into the old behavior where
PyProxy.toString calls repr and not str.

Returns
Promise<PyodideInterface> – The pyodide module.

Example

async function main() {
const pyodide = await loadPyodide({
fullStdLib: true,
stdout: (msg) => console.log(`Pyodide: ${msg}`),

});
console.log("Loaded Pyodide");

}
main();

pyodide

Attributes:

ERRNO_CODES A map from posix error names to error codes.
FS An alias to the Emscripten File System API.
PATH An alias to the Emscripten Path API.
canvas See pyodide.canvas.
ffi See pyodide.ffi

continues on next page

3.1. Using Pyodide 59

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://www.typescriptlang.org/docs/handbook/2/functions.html#void
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://www.typescriptlang.org/docs/handbook/2/functions.html#void
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://docs.python.org/3.10/using/cmdline.html#interface-options
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://docs.python.org/3.11/library/os.html#os.environ
https://docs.python.org/3.10/using/cmdline.html#environment-variables
https://docs.python.org/3.10/using/cmdline.html#environment-variables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://emscripten.org/docs/api_reference/Filesystem-API.html
https://github.com/emscripten-core/emscripten/blob/main/src/library_path.js

Pyodide, Release 0.26.0.dev0

Table 3 – continued from previous page
globals An alias to the global Python namespace.
loadedPackages The list of packages that Pyodide has loaded.
pyodide_py An alias to the Python pyodide package.
version The Pyodide version.

Functions:

checkInterrupt() Throws a KeyboardInterrupt error if a
KeyboardInterrupt has been requested via the
interrupt buffer.

detectEnvironment() Detects the current environment and returns a record
with the results.

async loadPackage(names, options) Load packages from the Pyodide distribution or Python
wheels by URL.

async loadPackagesFromImports(code, options) Inspect a Python code chunk and use pyodide.
loadPackage() to install any known packages that the
code chunk imports.

async mountNativeFS(path, fileSystemHandle) Mounts a FileSystemDirectoryHandle into the tar-
get directory.

mountNodeFS(emscriptenPath, hostPath) Mounts a host directory into Pyodide file system.
pyimport(mod_name) Imports a module and returns it.
registerComlink(Comlink) Tell Pyodide about Comlink.
registerJsModule(name, module) Registers the JavaScript object module as a JavaScript

module named name.
runPython(code, options) Runs a string of Python code from JavaScript, using

eval_code() to evaluate the code.
async runPythonAsync(code, options) Run a Python code string with top level await using

eval_code_async() to evaluate the code.
scheduleCallback(callback, timeout=0) Schedule a callback.
setDebug(debug) Turn on or off debug mode.
setInterruptBuffer(interrupt_buffer) Sets the interrupt buffer to be interrupt_buffer.
setStderr(options) Sets the standard error handler.
setStdin(options) Set a stdin handler.
setStdout(options) Sets the standard out handler.
toPy(obj, options) Convert a JavaScript object to a Python object as best as

possible.
unpackArchive(buffer, format, options) Unpack an archive into a target directory.
unregisterJsModule(name) Unregisters a JavaScript module with given name

that has been previously registered with pyodide.
registerJsModule() or register_js_module().

Classes:

_PropagatePythonError

pyodide.ERRNO_CODES

type: { [code: string]: number; }

A map from posix error names to error codes.

60 Chapter 3. Table of contents

https://docs.python.org/3.11/library/exceptions.html#KeyboardInterrupt
https://docs.python.org/3.11/library/exceptions.html#KeyboardInterrupt
https://developer.mozilla.org/en-US/docs/Web/API/FileSystemDirectoryHandle
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number

Pyodide, Release 0.26.0.dev0

pyodide.FS

type: any

An alias to the Emscripten File System API.

This provides a wide range of POSIX-like file/device operations, including mount which can be used to extend
the in-memory filesystem with features like persistence.

While all the file systems implementations are enabled, only the default MEMFS is guaranteed to work in all run-
time settings. The implementations are available as members of FS.filesystems: IDBFS, NODEFS, PROXYFS,
WORKERFS.

pyodide.PATH

type: any

An alias to the Emscripten Path API.

This provides a variety of operations for working with file system paths, such as dirname, normalize, and
splitPath.

pyodide.canvas

See pyodide.canvas.

pyodide.ffi

See pyodide.ffi

pyodide.globals

type: PyProxy

An alias to the global Python namespace.

For example, to access a variable called foo in the Python global scope, use pyodide.globals.get("foo")

pyodide.loadedPackages

type: { [key: string]: string; }

The list of packages that Pyodide has loaded. Use Object.keys(pyodide.loadedPackages) to get the list
of names of loaded packages, and pyodide.loadedPackages[package_name] to access install location for a
particular package_name.

pyodide.pyodide_py

type: PyProxy

An alias to the Python pyodide package.

You can use this to call functions defined in the Pyodide Python package from JavaScript.

pyodide.version

type: string

The Pyodide version.

The version here is a Python version, following PEP 440. This is different from the version in package.json
which follows the node package manager version convention.

pyodide.checkInterrupt()

Throws a KeyboardInterrupt error if a KeyboardInterrupt has been requested via the interrupt buffer.

This can be used to enable keyboard interrupts during execution of JavaScript code, just as
PyErr_CheckSignals() is used to enable keyboard interrupts during execution of C code.

3.1. Using Pyodide 61

https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://emscripten.org/docs/api_reference/Filesystem-API.html
https://emscripten.org/docs/api_reference/Filesystem-API.html#FS.mount
https://emscripten.org/docs/api_reference/Filesystem-API.html#persistent-data
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://github.com/emscripten-core/emscripten/blob/main/src/library_path.js
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://peps.python.org/pep-0440/
https://docs.python.org/3.11/library/exceptions.html#KeyboardInterrupt
https://docs.python.org/3.11/library/exceptions.html#KeyboardInterrupt
https://docs.python.org/3.11/c-api/exceptions.html#c.PyErr_CheckSignals

Pyodide, Release 0.26.0.dev0

pyodide.detectEnvironment()

Detects the current environment and returns a record with the results. This function is useful for debugging and
testing purposes.

Returns
Record<string, boolean>

async pyodide.loadPackage(names, options)
Load packages from the Pyodide distribution or Python wheels by URL.

This installs packages in the virtual filesystem. Packages needs to be imported from Python before it can be used.

This function can only install packages included in the Pyodide distribution, or Python wheels by URL, without
dependency resolution. It is significantly more limited in terms of functionality as compared to micropip,
however it has less overhead and can be faster.

When installing binary wheels by URLs it is user’s responsibility to check that the installed binary wheel is
compatible in terms of Python and Emscripten versions. Compatibility is not checked during installation time
(unlike with micropip). If a wheel for the wrong Python/Emscripten version is installed it would fail at import
time.

Arguments

• names (string | string[] | PyProxy) – Either a single package name or URL
or a list of them. URLs can be absolute or relative. The URLs must cor-
respond to Python wheels: either pure Python wheels, with a file name ending
with none-any.whl or Emscripten/WASM 32 wheels, with a file name ending with
cp<pyversion>_emscripten_<em_version>_wasm32.whl. The argument can be a
PyProxy of a list, in which case the list will be converted to JavaScript and the PyProxy
will be destroyed.

• options.messageCallback ((message: string) => void) – A callback, called with
progress messages (optional)

• options.errorCallback ((message: string) => void) – A callback, called with er-
ror/warning messages (optional)

• options.checkIntegrity (boolean) – If true, check the integrity of the downloaded
packages (default: true)

Returns
Promise<PackageData[]> – The loaded package data.

async pyodide.loadPackagesFromImports(code, options)
Inspect a Python code chunk and use pyodide.loadPackage() to install any known packages that the code
chunk imports. Uses the Python API pyodide.code.find_imports() to inspect the code.

For example, given the following code as input

import numpy as np
x = np.array([1, 2, 3])

loadPackagesFromImports() will call pyodide.loadPackage(['numpy']).

Arguments

• code (string) – The code to inspect.

• options.messageCallback ((message: string) => void) – A callback, called with
progress messages (optional)

62 Chapter 3. Table of contents

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://micropip.pyodide.org/en/v0.2.2/project/api.html#module-micropip
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://www.typescriptlang.org/docs/handbook/2/functions.html#void
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://www.typescriptlang.org/docs/handbook/2/functions.html#void
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://www.typescriptlang.org/docs/handbook/2/functions.html#void

Pyodide, Release 0.26.0.dev0

• options.errorCallback ((message: string) => void) – A callback, called with er-
ror/warning messages (optional)

• options.checkIntegrity (boolean) – If true, check the integrity of the downloaded
packages (default: true)

Returns
Promise<PackageData[]>

async pyodide.mountNativeFS(path, fileSystemHandle)
Mounts a FileSystemDirectoryHandle into the target directory. Currently it’s only possible to acquire a
FileSystemDirectoryHandle in Chrome.

Arguments

• path (string) – The absolute path in the Emscripten file system to mount the native direc-
tory. If the directory does not exist, it will be created. If it does exist, it must be empty.

• fileSystemHandle (FileSystemDirectoryHandle) – A handle returned by
navigator.storage.getDirectory() or window.showDirectoryPicker().

Returns
Promise<{ syncfs: () => Promise<void>; }>

pyodide.mountNodeFS(emscriptenPath, hostPath)
Mounts a host directory into Pyodide file system. Only works in node.

Arguments

• emscriptenPath (string) – The absolute path in the Emscripten file system to mount the
native directory. If the directory does not exist, it will be created. If it does exist, it must be
empty.

• hostPath (string) – The host path to mount. It must be a directory that exists.

pyodide.pyimport(mod_name)
Imports a module and returns it.

If name has no dot in it, then pyimport(name) is approximately equivalent to:

pyodide.runPython(`import ${name}; ${name}`)

except that name is not introduced into the Python global namespace. If the name has one or more dots in it, say it
is of the form path.name where name has no dots but path may have zero or more dots. Then it is approximately
the same as:

pyodide.runPython(`from ${path} import ${name}; ${name}`);

Arguments

• mod_name (string) – The name of the module to import

Returns
any

Example

pyodide.pyimport("math.comb")(4, 2) // returns 4 choose 2 = 6

3.1. Using Pyodide 63

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://www.typescriptlang.org/docs/handbook/2/functions.html#void
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/API/FileSystemDirectoryHandle
https://developer.mozilla.org/en-US/docs/Web/API/FileSystemDirectoryHandle
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/API/FileSystemDirectoryHandle
https://developer.mozilla.org/en-US/docs/Web/API/StorageManager/getDirectory
https://developer.mozilla.org/en-US/docs/Web/API/Window/showDirectoryPicker
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://www.typescriptlang.org/docs/handbook/2/functions.html#void
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any

Pyodide, Release 0.26.0.dev0

pyodide.registerComlink(Comlink)
Tell Pyodide about Comlink. Necessary to enable importing Comlink proxies into Python.

Arguments

• Comlink (any) –

pyodide.registerJsModule(name, module)
Registers the JavaScript object module as a JavaScript module named name. This module can then be imported
from Python using the standard Python import system. If another module by the same name has already been
imported, this won’t have much effect unless you also delete the imported module from sys.modules. This
calls register_js_module().

Any attributes of the JavaScript objects which are themselves objects will be treated as submodules:

pyodide.registerJsModule("mymodule", { submodule: { value: 7 } });
pyodide.runPython(`

from mymodule.submodule import value
assert value == 7

`);

If you wish to prevent this, try the following instead:

const sys = pyodide.pyimport("sys");
sys.modules.set("mymodule", { obj: { value: 7 } });
pyodide.runPython(`

from mymodule import obj
assert obj.value == 7
attempting to treat obj as a submodule raises ModuleNotFoundError:
"No module named 'mymodule.obj'; 'mymodule' is not a package"
from mymodule.obj import value

`);

Arguments

• name (string) – Name of the JavaScript module to add

• module (object) – JavaScript object backing the module

pyodide.runPython(code, options)
Runs a string of Python code from JavaScript, using eval_code() to evaluate the code. If the last statement
in the Python code is an expression (and the code doesn’t end with a semicolon), the value of the expression is
returned.

Arguments

• code (string) – The Python code to run

• options.globals (PyProxy) – An optional Python dictionary to use as the globals. De-
faults to pyodide.globals.

• options.locals (PyProxy) – An optional Python dictionary to use as the locals. Defaults
to the same as globals.

• options.filename (string) – An optional string to use as the file name. Defaults to
"<exec>". If a custom file name is given, the traceback for any exception that is thrown will
show source lines (unless the given file name starts with < and ends with >).

64 Chapter 3. Table of contents

https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://docs.python.org/3.11/library/sys.html#sys.modules
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

Pyodide, Release 0.26.0.dev0

Returns
any – The result of the Python code translated to JavaScript. See the documentation for
eval_code() for more info.

Example

async function main(){
const pyodide = await loadPyodide();
console.log(pyodide.runPython("1 + 2"));
// 3

const globals = pyodide.toPy({ x: 3 });
console.log(pyodide.runPython("x + 1", { globals }));
// 4

const locals = pyodide.toPy({ arr: [1, 2, 3] });
console.log(pyodide.runPython("sum(arr)", { locals }));
// 6

}
main();

async pyodide.runPythonAsync(code, options)
Run a Python code string with top level await using eval_code_async() to evaluate the code. Returns a promise
which resolves when execution completes. If the last statement in the Python code is an expression (and the code
doesn’t end with a semicolon), the returned promise will resolve to the value of this expression.

For example:

let result = await pyodide.runPythonAsync(`
from js import fetch
response = await fetch("./pyodide-lock.json")
packages = await response.json()
If final statement is an expression, its value is returned to JavaScript
len(packages.packages.object_keys())

`);
console.log(result); // 79

Python imports

Since pyodide 0.18.0, you must call loadPackagesFromImports() to import any python packages referenced
via import statements in your code. This function will no longer do it for you.

Arguments

• code (string) – The Python code to run

• options.globals (PyProxy) – An optional Python dictionary to use as the globals. De-
faults to pyodide.globals.

• options.locals (PyProxy) – An optional Python dictionary to use as the locals. Defaults
to the same as globals.

• options.filename (string) – An optional string to use as the file name. Defaults to
"<exec>". If a custom file name is given, the traceback for any exception that is thrown will

3.1. Using Pyodide 65

https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

Pyodide, Release 0.26.0.dev0

show source lines (unless the given file name starts with < and ends with >).

Returns
Promise<any> – The result of the Python code translated to JavaScript.

pyodide.scheduleCallback(callback, timeout=0)
Schedule a callback. Supports both immediate and delayed callbacks.

Arguments

• callback (() => void) – The callback to be scheduled

• timeout (number) – The delay in milliseconds before the callback is called

pyodide.setDebug(debug)
Turn on or off debug mode. In debug mode, some error messages are improved at a performance cost.

Arguments

• debug (boolean) – If true, turn debug mode on. If false, turn debug mode off.

Returns
boolean – The old value of the debug flag.

pyodide.setInterruptBuffer(interrupt_buffer)
Sets the interrupt buffer to be interrupt_buffer. This is only useful when Pyodide is used in a webworker.
The buffer should be a SharedArrayBuffer shared with the main browser thread (or another worker). In that
case, signal signum may be sent by writing signum into the interrupt buffer. If signum does not satisfy 0 <
signum < 65 it will be silently ignored.

You can disable interrupts by calling setInterruptBuffer(undefined).

If you wish to trigger a KeyboardInterrupt, write SIGINT (a 2) into the interrupt buffer.

By default SIGINT raises a KeyboardInterrupt and all other signals are ignored. You can install custom signal
handlers with the signal module. Even signals that normally have special meaning and can’t be overridden like
SIGKILL and SIGSEGV are ignored by default and can be used for any purpose you like.

Arguments

• interrupt_buffer (TypedArray) –

pyodide.setStderr(options)
Sets the standard error handler. See the documentation for pyodide.setStdout().

Arguments

• options.batched ((output: string) => void) –

• options.raw ((charCode: number) => void) –

• options.write ((buffer: Uint8Array) => number) –

• options.isatty (boolean) –

pyodide.setStdin(options)
Set a stdin handler. See redirecting standard streams for a more detailed explanation. There are two different
possible interfaces to implement a handler. It’s also possible to select either the default handler or an error handler
that always returns an IO error.

1. passing a read function (see below),

2. passing a stdin function (see below),

3. passing error: true indicates that attempting to read from stdin should always raise an IO error.

66 Chapter 3. Table of contents

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/functions.html#void
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://docs.python.org/3.11/library/exceptions.html#KeyboardInterrupt
https://docs.python.org/3.11/library/exceptions.html#KeyboardInterrupt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://www.typescriptlang.org/docs/handbook/2/functions.html#void
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://www.typescriptlang.org/docs/handbook/2/functions.html#void
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Uint8Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean

Pyodide, Release 0.26.0.dev0

4. passing none of these sets the default behavior. In node, the default is to read from stdin. In the browser,
the default is to raise an error.

The functions on the options argument will be called with options bound to this so passing an instance of
a class as the options object works as expected.

The interfaces that the handlers implement are as follows:

1. The read function is called with a Uint8Array argument. The function should place the utf8-encoded
input into this buffer and return the number of bytes written. For instance, if the buffer was completely
filled with input, then return buffer.length. If a read function is passed you may optionally also pass
an fsync function which is called when stdin is flushed.

2. The stdin function is called with zero arguments. It should return one of:

• null or undefined: these are interpreted as end of file.

• a number

• a string

• an ArrayBuffer or TypedArray with BYTES_PER_ELEMENT equal to 1. The buffer should contain
utf8 encoded text.

If a number is returned, it is interpreted as a single character code. The number should be between 0 and
255.

If a string is returned, it is encoded into a buffer using TextEncoder. By default, an EOF is appended after
each string or buffer returned. If this behavior is not desired, pass autoEOF: false.

Arguments

• options.stdin (() => null | undefined | string | ArrayBuffer | Uint8Array |
number) – A stdin handler

• options.read ((buffer: Uint8Array) => number) – A read handler

• options.error (boolean) – If this is set to true, attempts to read from stdin will always
set an IO error.

• options.isatty (boolean) – Should isatty(stdin) be true or false (default false).

• options.autoEOF (boolean) – Insert an EOF automatically after each string or buffer?
(default true). This option can only be used with the stdin handler.

pyodide.setStdout(options)
Sets the standard out handler. A batched handler, a raw handler, or a write function can be provided. If no handler
is provided, we restore the default handler.

The functions on the options argument will be called with options bound to this so passing an instance of
a class as the options object works as expected.

Arguments

• options.batched ((output: string) => void) – A batched handler is called with a string
whenever a newline character is written or stdout is flushed. In the former case, the received
line will end with a newline, in the latter case it will not.

• options.raw ((charCode: number) => void) – A raw handler is called with the handler is
called with a number for each byte of the output to stdout.

• options.write ((buffer: Uint8Array) => number) – A write handler is called with a
buffer that contains the utf8 encoded binary data

3.1. Using Pyodide 67

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/null
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray/BYTES_PER_ELEMENT
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TextEncoder
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/null
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Uint8Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Uint8Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://docs.python.org/3.11/library/os.html#os.isatty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://www.typescriptlang.org/docs/handbook/2/functions.html#void
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://www.typescriptlang.org/docs/handbook/2/functions.html#void
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Uint8Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number

Pyodide, Release 0.26.0.dev0

• options.isatty (boolean) – Should isatty(stdout) return true or false. Must be
false if a batched handler is used. (default false).

Example

async function main(){
const pyodide = await loadPyodide();
pyodide.setStdout({ batched: (msg) => console.log(msg) });
pyodide.runPython("print('ABC')");
// 'ABC'
pyodide.setStdout({ raw: (byte) => console.log(byte) });
pyodide.runPython("print('ABC')");
// 65
// 66
// 67
// 10 (the ascii values for 'ABC' including a new line character)

}
main();

pyodide.toPy(obj, options)
Convert a JavaScript object to a Python object as best as possible.

This is similar to to_py() but for use from JavaScript. If the object is immutable or a PyProxy, it will be
returned unchanged. If the object cannot be converted into Python, it will be returned unchanged.

See JavaScript to Python for more information.

Arguments

• obj (any) – The object to convert.

• options.depth (number) – Optional argument to limit the depth of the conversion.

• options.defaultConverter ((value: any, converter: (value: any) => any, cacheConver-
sion: (input: any, output: any) => void) => any) – Optional argument to convert objects
with no default conversion. See the documentation of to_py().

Returns
any – The object converted to Python.

pyodide.unpackArchive(buffer, format, options)
Unpack an archive into a target directory.

Arguments

• buffer (ArrayBuffer | TypedArray) – The archive as an ArrayBuffer or TypedArray.

• format (string) – The format of the archive. Should be one of the formats recognized
by shutil.unpack_archive(). By default the options are 'bztar', 'gztar', 'tar',
'zip', and 'wheel'. Several synonyms are accepted for each format, e.g., for 'gztar' any
of '.gztar', '.tar.gz', '.tgz', 'tar.gz' or 'tgz' are considered to be synonyms.

• options.extractDir (string) – The directory to unpack the archive into. Defaults to the
working directory.

pyodide.unregisterJsModule(name)
Unregisters a JavaScript module with given name that has been previously registered with pyodide.
registerJsModule() or register_js_module(). If a JavaScript module with that name does not already

68 Chapter 3. Table of contents

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://docs.python.org/3.11/library/os.html#os.isatty
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/functions.html#void
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://docs.python.org/3.11/library/shutil.html#shutil.unpack_archive
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

Pyodide, Release 0.26.0.dev0

exist, will throw an error. Note that if the module has already been imported, this won’t have much effect unless
you also delete the imported module from sys.modules. This calls unregister_js_module().

Arguments

• name (string) – Name of the JavaScript module to remove

class pyodide._PropagatePythonError()

pyodide.ffi

To import types from pyodide.ffi you can use for example

import type { PyProxy } from "pyodide/ffi";

Classes:

PyAsyncGenerator A PyProxy whose proxied Python object is an
asynchronous generator (i.e., it is an instance of
AsyncGenerator)

PyAsyncIterable A PyProxy whose proxied Python object is asyn-
chronous iterable (i.e., has an __aiter__() method).

PyAsyncIterator A PyProxy whose proxied Python object is an asyn-
chronous iterator

PyAwaitable A PyProxy whose proxied Python object is awaitable
(i.e., has an __await__() method).

PyBuffer A PyProxy whose proxied Python object supports the
Python Buffer Protocol.

PyBufferView A class to allow access to Python data buffers from
JavaScript.

PyCallable A PyProxy whose proxied Python object is callable (i.e.,
has an __call__() method).

PyDict A PyProxy whose proxied Python object is a dict.
PyGenerator A PyProxy whose proxied Python object is a generator

(i.e., it is an instance of Generator).
PyIterable A PyProxy whose proxied Python object is iterable (i.e.,

it has an __iter__() method).
PyIterator A PyProxy whose proxied Python object is an iterator

(i.e., has a send() or __next__() method).
PyMutableSequence A PyProxy whose proxied Python object is an

MutableSequence (i.e., a list)
PyProxy A PyProxy is an object that allows idiomatic use of a

Python object from JavaScript.
PyProxyWithGet A PyProxy whose proxied Python object has a

__getitem__() method.
PyProxyWithHas A PyProxy whose proxied Python object has a

__contains__() method.
PyProxyWithLength A PyProxy whose proxied Python object has a

__len__() method.
PyProxyWithSet A PyProxy whose proxied Python object has a

__setitem__() or __delitem__() method.
PySequence A PyProxy whose proxied Python object is an

Sequence (i.e., a list)
continues on next page

3.1. Using Pyodide 69

https://docs.python.org/3.11/library/sys.html#sys.modules
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://docs.python.org/3.11/glossary.html#term-asynchronous-generator
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.AsyncGenerator
https://docs.python.org/3.11/glossary.html#term-asynchronous-iterable
https://docs.python.org/3.11/glossary.html#term-asynchronous-iterable
https://docs.python.org/3.11/reference/datamodel.html#object.__aiter__
https://docs.python.org/3.11/glossary.html#term-asynchronous-iterator
https://docs.python.org/3.11/glossary.html#term-asynchronous-iterator
https://docs.python.org/3.11/library/asyncio-task.html#asyncio-awaitables
https://docs.python.org/3.11/reference/datamodel.html#object.__await__
https://docs.python.org/3.11/c-api/buffer.html
https://docs.python.org/3.11/glossary.html#term-callable
https://docs.python.org/3.11/reference/datamodel.html#object.__call__
https://docs.python.org/3.11/library/stdtypes.html#dict
https://docs.python.org/3.11/glossary.html#term-generator
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Generator
https://docs.python.org/3.11/glossary.html#term-iterable
https://docs.python.org/3.11/reference/datamodel.html#object.__iter__
https://docs.python.org/3.11/glossary.html#term-iterator
https://docs.python.org/3.11/reference/expressions.html#generator.send
https://docs.python.org/3.11/library/stdtypes.html#iterator.__next__
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.MutableSequence
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/reference/datamodel.html#object.__getitem__
https://docs.python.org/3.11/reference/datamodel.html#object.__contains__
https://docs.python.org/3.11/reference/datamodel.html#object.__len__
https://docs.python.org/3.11/reference/datamodel.html#object.__setitem__
https://docs.python.org/3.11/reference/datamodel.html#object.__delitem__
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3.11/library/stdtypes.html#list

Pyodide, Release 0.26.0.dev0

Table 6 – continued from previous page
PythonError A JavaScript error caused by a Python exception.

class pyodide.ffi.PyAsyncGenerator()

A PyProxy whose proxied Python object is an asynchronous generator (i.e., it is an instance of
AsyncGenerator)

Extends:

• PyProxy

async PyAsyncGenerator.return(v)
Throws a GeneratorExit into the generator and if the GeneratorExit is not caught returns the argument
value {done: true, value: v}. If the generator catches the GeneratorExit and returns or yields
another value the next value of the generator this is returned in the normal way. If it throws some error
other than GeneratorExit or StopAsyncIteration, that error is propagated. See the documentation
for AsyncGenerator.throw()

Arguments

• v (any) –

Returns
Promise<IteratorResult<any, any>> – An Object with two properties: done and
value. When the generator yields some_value, return returns {done : false, value
: some_value}. When the generator raises a StopAsyncIteration exception, return
returns {done : true, value : result_value}.

async PyAsyncGenerator.throw(exc)
Throws an exception into the Generator.

See the documentation for AsyncGenerator.throw().

Arguments

• exc (any) –

Returns
Promise<IteratorResult<any, any>> – An Object with two properties: done and
value. When the generator yields some_value, return returns {done : false, value
: some_value}. When the generator raises a StopIteration(result_value) excep-
tion, return returns {done : true, value : result_value}.

class pyodide.ffi.PyAsyncIterable()

A PyProxy whose proxied Python object is asynchronous iterable (i.e., has an __aiter__() method).

Extends:

• PyProxy

PyAsyncIterable.[SymbolasyncIterator]()

This translates to the Python code aiter(obj). Return an async iterator associated to the proxy. See the
documentation for Symbol.asyncIterator.

This will be used implicitly by for(await let x of proxy){}.

Returns
AsyncIterator<any, any, any>

70 Chapter 3. Table of contents

https://docs.python.org/3.11/glossary.html#term-asynchronous-generator
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.AsyncGenerator
https://docs.python.org/3.11/library/exceptions.html#GeneratorExit
https://docs.python.org/3.11/library/exceptions.html#GeneratorExit
https://docs.python.org/3.11/library/exceptions.html#GeneratorExit
https://docs.python.org/3.11/library/exceptions.html#GeneratorExit
https://docs.python.org/3.11/library/exceptions.html#StopAsyncIteration
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/AsyncGenerator/throw
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols#next
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://docs.python.org/3.11/library/exceptions.html#StopAsyncIteration
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/AsyncGenerator/throw
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols#next
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://docs.python.org/3.11/glossary.html#term-asynchronous-iterable
https://docs.python.org/3.11/reference/datamodel.html#object.__aiter__
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol/asyncIterator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols#the_async_iterator_and_async_iterable_protocols
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any

Pyodide, Release 0.26.0.dev0

class pyodide.ffi.PyAsyncIterator()

A PyProxy whose proxied Python object is an asynchronous iterator

Extends:

• PyProxy

async PyAsyncIterator.next(arg=undefined)
This translates to the Python code anext(obj). Returns the next value of the asynchronous iterator. The
argument will be sent to the Python iterator (if it’s a generator for instance).

This will be used implicitly by for(let x of proxy){}.

Arguments

• arg (any) –

Returns
Promise<IteratorResult<any, any>> – An Object with two properties: done and
value. When the iterator yields some_value, next returns {done : false, value :
some_value}. When the giterator is done, next returns {done : true }.

class pyodide.ffi.PyAwaitable()

A PyProxy whose proxied Python object is awaitable (i.e., has an __await__() method).

Extends:

• PyProxy

class pyodide.ffi.PyBuffer()

A PyProxy whose proxied Python object supports the Python Buffer Protocol.

Examples of buffers include {py:class}`bytes` objects and numpy {external+numpy:ref}`arrays`.

Extends:

• PyProxy

PyBuffer.getBuffer(type)
Get a view of the buffer data which is usable from JavaScript. No copy is ever performed.

We do not support suboffsets, if the buffer requires suboffsets we will throw an error. JavaScript nd array
libraries can’t handle suboffsets anyways. In this case, you should use the toJs() api or copy the buffer to
one that doesn’t use suboffsets (using e.g., numpy.ascontiguousarray()).

If the buffer stores big endian data or half floats, this function will fail without an explicit type argument.
For big endian data you can use toJs(). DataView has support for big endian data, so you might want to
pass 'dataview' as the type argument in that case.

Arguments

• type (string) – The type of the data field in the output. Should be one of: "i8", "u8",
"u8clamped", "i16", "u16", "i32", "u32", "i32", "u32", "i64", "u64", "f32",
"f64, or "dataview". This argument is optional, if absent getBuffer() will try to de-
termine the appropriate output type based on the buffer format string (see Format Strings).

Returns
PyBufferView

class pyodide.ffi.PyBufferView()

A class to allow access to Python data buffers from JavaScript. These are produced by getBuffer() and cannot
be constructed directly. When you are done, release it with the release() method. See the Python Buffer
Protocol documentation for more information.

3.1. Using Pyodide 71

https://docs.python.org/3.11/glossary.html#term-asynchronous-iterator
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols#next
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://docs.python.org/3.11/library/asyncio-task.html#asyncio-awaitables
https://docs.python.org/3.11/reference/datamodel.html#object.__await__
https://docs.python.org/3.11/c-api/buffer.html
https://numpy.org/doc/stable/reference/generated/numpy.ascontiguousarray.html#numpy.ascontiguousarray
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DataView
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://docs.python.org/3.11/library/struct.html#struct-format-strings
https://docs.python.org/3.11/c-api/buffer.html
https://docs.python.org/3.11/c-api/buffer.html

Pyodide, Release 0.26.0.dev0

To find the element x[a_1, ..., a_n], you could use the following code:

function multiIndexToIndex(pybuff, multiIndex){
if(multindex.length !==pybuff.ndim){
throw new Error("Wrong length index");

}
let idx = pybuff.offset;
for(let i = 0; i < pybuff.ndim; i++){
if(multiIndex[i] < 0){

multiIndex[i] = pybuff.shape[i] - multiIndex[i];
}
if(multiIndex[i] < 0 || multiIndex[i] >= pybuff.shape[i]){
throw new Error("Index out of range");

}
idx += multiIndex[i] * pybuff.stride[i];

}
return idx;

}
console.log("entry is", pybuff.data[multiIndexToIndex(pybuff, [2, 0, -1])]);

Converting between TypedArray types

The following naive code to change the type of a typed array does not work:

// Incorrectly convert a TypedArray.
// Produces a Uint16Array that points to the entire WASM memory!
let myarray = new Uint16Array(buffer.data.buffer);

Instead, if you want to convert the output TypedArray, you need to say:

// Correctly convert a TypedArray.
let myarray = new Uint16Array(

buffer.data.buffer,
buffer.data.byteOffset,
buffer.data.byteLength

);

PyBufferView._released

type: boolean

PyBufferView._view_ptr

type: number

PyBufferView.c_contiguous

type: boolean

Is it C contiguous? See memoryview.c_contiguous.

PyBufferView.data

type: TypedArray

The actual data. A typed array of an appropriate size backed by a segment of the WASM memory.

The type argument of getBuffer() determines which sort of TypedArray or DataView to return. By
default getBuffer() will look at the format string to determine the most appropriate option. Most often
the result is a Uint8Array.

72 Chapter 3. Table of contents

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://docs.python.org/3.11/library/stdtypes.html#memoryview.c_contiguous
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DataView
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Uint8Array

Pyodide, Release 0.26.0.dev0

Contiguity

If the buffer is not contiguous, the readonly TypedArray will contain data that is not part of the buffer.
Modifying this data leads to undefined behavior.

Read only buffers

If buffer.readonly is true, you should not modify the buffer. Modifying a read only buffer leads to
undefined behavior.

PyBufferView.f_contiguous

type: boolean

Is it Fortran contiguous? See memoryview.f_contiguous.

PyBufferView.format

type: string

The format string for the buffer. See Format Strings and memoryview.format.

PyBufferView.itemsize

type: number

How large is each entry in bytes? See memoryview.itemsize.

PyBufferView.nbytes

type: number

The total number of bytes the buffer takes up. This is equal to buff.data.byteLength. See
memoryview.nbytes.

PyBufferView.ndim

type: number

The number of dimensions of the buffer. If ndim is 0, the buffer represents a single scalar or struct. Other-
wise, it represents an array. See memoryview.ndim.

PyBufferView.offset

type: number

The offset of the first entry of the array. For instance if our array is 3d, then you will find array[0,0,0]
at pybuf.data[pybuf.offset]

PyBufferView.readonly

type: boolean

If the data is read only, you should not modify it. There is no way for us to enforce this, but it may cause
very weird behavior. See memoryview.readonly.

PyBufferView.shape

type: number[]

The shape of the buffer, that is how long it is in each dimension. The length will be equal to ndim. For
instance, a 2x3x4 array would have shape [2, 3, 4]. See memoryview.shape.

3.1. Using Pyodide 73

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://docs.python.org/3.11/library/stdtypes.html#memoryview.f_contiguous
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://docs.python.org/3.11/library/struct.html#struct-format-strings
https://docs.python.org/3.11/library/stdtypes.html#memoryview.format
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://docs.python.org/3.11/library/stdtypes.html#memoryview.itemsize
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray/byteLength
https://docs.python.org/3.11/library/stdtypes.html#memoryview.nbytes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://docs.python.org/3.11/library/stdtypes.html#memoryview.ndim
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://docs.python.org/3.11/library/stdtypes.html#memoryview.readonly
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://docs.python.org/3.11/library/stdtypes.html#memoryview.shape

Pyodide, Release 0.26.0.dev0

PyBufferView.strides

type: number[]

An array of of length ndim giving the number of elements to skip to get to a new element in each dimension.
See the example definition of a multiIndexToIndex function above. See memoryview.strides.

PyBufferView.release()

Release the buffer. This allows the memory to be reclaimed.

class pyodide.ffi.PyCallable()

A PyProxy whose proxied Python object is callable (i.e., has an __call__() method).

Extends:

• PyProxy

PyCallable.apply(thisArg, jsargs)
The apply() method calls the specified function with a given this value, and arguments provided as an
array (or an array-like object). Like Function.apply().

Arguments

• thisArg (any) – The this argument. Has no effect unless the PyCallable has
captureThis() set. If captureThis() is set, it will be passed as the first argument
to the Python function.

• jsargs (any) – The array of arguments

Returns
any – The result from the function call.

PyCallable.bind(thisArg, ...jsargs)
The bind() method creates a new function that, when called, has its this keyword set to the provided
value, with a given sequence of arguments preceding any provided when the new function is called. See
Function.bind().

If the PyCallable does not have captureThis() set, the this parameter will be discarded. If it does
have captureThis() set, thisArg will be set to the first argument of the Python function. The returned
proxy and the original proxy have the same lifetime so destroying either destroys both.

Arguments

• thisArg (any) – The value to be passed as the this parameter to the target function func
when the bound function is called.

• jsargs (any) – Extra arguments to prepend to arguments provided to the bound function
when invoking func.

Returns
PyProxy

PyCallable.call(thisArg, ...jsargs)
Calls the function with a given this value and arguments provided individually. See Function.call().

Arguments

• thisArg (any) – The this argument. Has no effect unless the PyCallable has
captureThis() set. If captureThis() is set, it will be passed as the first argument
to the Python function.

• jsargs (any) – The arguments

74 Chapter 3. Table of contents

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://docs.python.org/3.11/library/stdtypes.html#memoryview.strides
https://docs.python.org/3.11/glossary.html#term-callable
https://docs.python.org/3.11/reference/datamodel.html#object.__call__
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/bind
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any

Pyodide, Release 0.26.0.dev0

Returns
any – The result from the function call.

PyCallable.callKwargs(...jsargs)
Call the function with keyword arguments. The last argument must be an object with the keyword argu-
ments.

Arguments

• jsargs (any) –

Returns
any

PyCallable.callKwargsRelaxed(...jsargs)
Call the function with keyword arguments in a “relaxed” manner. The last argument must be an object with
the keyword arguments. Any extra arguments will be ignored. This matches the behavior of JavaScript
functions more accurately.

Missing arguments are NOT filled with None. If too few arguments are passed, this will still raise a
TypeError. Also, if the same argument is passed as both a keyword argument and a positional argument,
it will raise an error.

This uses pyodide.code.relaxed_call().

Arguments

• jsargs (any) –

Returns
any

async PyCallable.callPromising(...jsargs)
Call the function with stack switching enabled. The last argument must be an object with the keyword
arguments. Functions called this way can use run_sync() to block until an Awaitable is resolved. Only
works in runtimes with JS Promise integration.

Experimental

This feature is not yet stable.

Arguments

• jsargs (any) –

Returns
Promise<any>

async PyCallable.callPromisingKwargs(...jsargs)
Call the function with stack switching enabled. The last argument must be an object with the keyword
arguments. Functions called this way can use run_sync() to block until an Awaitable is resolved. Only
works in runtimes with JS Promise integration.

Experimental

This feature is not yet stable.

Arguments

3.1. Using Pyodide 75

https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://docs.python.org/3.11/library/exceptions.html#TypeError
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Awaitable
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Awaitable

Pyodide, Release 0.26.0.dev0

• jsargs (any) –

Returns
Promise<any>

PyCallable.callRelaxed(...jsargs)
Call the function in a “relaxed” manner. Any extra arguments will be ignored. This matches the behavior
of JavaScript functions more accurately.

Any extra arguments will be ignored. This matches the behavior of JavaScript functions more accurately.
Missing arguments are NOT filled with None. If too few arguments are passed, this will still raise a Type-
Error.

This uses pyodide.code.relaxed_call().

Arguments

• jsargs (any) –

Returns
any

PyCallable.callWithOptions(options, ...jsargs)
Call the Python function. The first parameter controls various parameters that change the way the call is
performed.

Arguments

• options.relaxed (boolean) – If true, extra arguments are ignored instead of raising a
TypeError.

• options.kwargs (boolean) – If true, the last argument is treated as a collection of key-
word arguments.

• options.promising (boolean) – If true, the call is made with stack switching enabled.
Not needed if the callee is an async Python function.

• jsargs (any) – Arguments to the Python function.

Returns
any

PyCallable.captureThis()

Returns a PyProxy that passes this as the first argument to the Python function. The returned PyProxy
has the internal captureThis property set.

It can then be used as a method on a JavaScript object. The returned proxy and the original proxy have the
same lifetime so destroying either destroys both.

For example:

let obj = { a : 7 };
pyodide.runPython(`
def f(self):
return self.a

`);
// Without captureThis, it doesn't work to use f as a method for obj:
obj.f = pyodide.globals.get("f");
obj.f(); // raises "TypeError: f() missing 1 required positional argument: 'self'
→˓"
// With captureThis, it works fine:

(continues on next page)

76 Chapter 3. Table of contents

https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://docs.python.org/3.11/library/exceptions.html#TypeError
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any

Pyodide, Release 0.26.0.dev0

(continued from previous page)

obj.f = pyodide.globals.get("f").captureThis();
obj.f(); // returns 7

Returns
PyProxy – The resulting PyProxy. It has the same lifetime as the original PyProxy but
passes this to the wrapped function.

class pyodide.ffi.PyDict()

A PyProxy whose proxied Python object is a dict.

Extends:

• PyProxy

• PyProxyWithGet

• PyProxyWithSet

• PyProxyWithHas

• PyProxyWithLength

• PyIterable

class pyodide.ffi.PyGenerator()

A PyProxy whose proxied Python object is a generator (i.e., it is an instance of Generator).

Extends:

• PyProxy

PyGenerator.return(v)
Throws a GeneratorExit into the generator and if the GeneratorExit is not caught returns the argu-
ment value {done: true, value: v}. If the generator catches the GeneratorExit and returns or
yields another value the next value of the generator this is returned in the normal way. If it throws some
error other than GeneratorExit or StopIteration, that error is propagated. See the documentation for
Generator.return().

Arguments

• v (any) –

Returns
IteratorResult<any, any> – An Object with two properties: done and value.
When the generator yields some_value, return returns {done : false, value :
some_value}. When the generator raises a StopIteration(result_value) exception,
return returns {done : true, value : result_value}.

PyGenerator.throw(exc)
Throws an exception into the Generator.

See the documentation for Generator.throw().

Arguments

• exc (any) –

Returns
IteratorResult<any, any> – An Object with two properties: done and value.
When the generator yields some_value, return returns {done : false, value :

3.1. Using Pyodide 77

https://docs.python.org/3.11/library/stdtypes.html#dict
https://docs.python.org/3.11/glossary.html#term-generator
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Generator
https://docs.python.org/3.11/library/exceptions.html#GeneratorExit
https://docs.python.org/3.11/library/exceptions.html#GeneratorExit
https://docs.python.org/3.11/library/exceptions.html#GeneratorExit
https://docs.python.org/3.11/library/exceptions.html#GeneratorExit
https://docs.python.org/3.11/library/exceptions.html#StopIteration
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator/return
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols#next
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator/throw
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols#next
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any

Pyodide, Release 0.26.0.dev0

some_value}. When the generator raises a StopIteration(result_value) exception,
return returns {done : true, value : result_value}.

class pyodide.ffi.PyIterable()

A PyProxy whose proxied Python object is iterable (i.e., it has an __iter__() method).

Extends:

• PyProxy

PyIterable.[Symboliterator]()

This translates to the Python code iter(obj). Return an iterator associated to the proxy. See the docu-
mentation for Symbol.iterator.

This will be used implicitly by for(let x of proxy){}.

Returns
Iterator<any, any, any>

class pyodide.ffi.PyIterator()

A PyProxy whose proxied Python object is an iterator (i.e., has a send() or __next__() method).

Extends:

• PyProxy

PyIterator.next(arg=undefined)
This translates to the Python code next(obj). Returns the next value of the generator. See the documen-
tation for Generator.next() The argument will be sent to the Python generator.

This will be used implicitly by for(let x of proxy){}.

Arguments

• arg (any) –

Returns
IteratorResult<any, any> – An Object with two properties: done and value. When the
generator yields some_value, next returns {done : false, value : some_value}.
When the generator raises a StopIteration exception, next returns {done : true,
value : result_value}.

class pyodide.ffi.PyMutableSequence()

A PyProxy whose proxied Python object is an MutableSequence (i.e., a list)

Extends:

• PyProxy

PyMutableSequence.copyWithin(target, start, end)
The Array.copyWithin() method shallow copies part of a PyMutableSequence to another location in
the same PyMutableSequence without modifying its length.

Arguments

• target (number) – Zero-based index at which to copy the sequence to.

• start (number) – Zero-based index at which to start copying elements from.

• end (number) – Zero-based index at which to end copying elements from.

Returns
any – The modified PyMutableSequence.

78 Chapter 3. Table of contents

https://docs.python.org/3.11/glossary.html#term-iterable
https://docs.python.org/3.11/reference/datamodel.html#object.__iter__
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol/iterator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols#the_iterator_protocol
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://docs.python.org/3.11/glossary.html#term-iterator
https://docs.python.org/3.11/reference/expressions.html#generator.send
https://docs.python.org/3.11/library/stdtypes.html#iterator.__next__
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator/next
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols#next
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://docs.python.org/3.11/library/exceptions.html#StopIteration
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.MutableSequence
https://docs.python.org/3.11/library/stdtypes.html#list
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/copyWithin
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any

Pyodide, Release 0.26.0.dev0

PyMutableSequence.fill(value, start, end)
The Array.fill() method changes all elements in an array to a static value, from a start index to an end
index.

Arguments

• value (any) – Value to fill the array with.

• start (number) – Zero-based index at which to start filling. Default 0.

• end (number) – Zero-based index at which to end filling. Default list.length.

Returns
any

PyMutableSequence.pop()

The Array.pop() method removes the last element from a PyMutableSequence.

Returns
any – The removed element from the PyMutableSequence; undefined if the
PyMutableSequence is empty.

PyMutableSequence.push(...elts)
The Array.push() method adds the specified elements to the end of a PyMutableSequence.

Arguments

• elts (any[]) – The element(s) to add to the end of the PyMutableSequence.

Returns
any – The new length property of the object upon which the method was called.

PyMutableSequence.reverse()

The Array.reverse() method reverses a PyMutableSequence in place.

Returns
PyMutableSequence – A reference to the same PyMutableSequence

PyMutableSequence.shift()

The Array.shift() method removes the first element from a PyMutableSequence.

Returns
any – The removed element from the PyMutableSequence; undefined if the
PyMutableSequence is empty.

PyMutableSequence.sort(compareFn)
The Array.sort() method sorts the elements of a PyMutableSequence in place.

Arguments

• compareFn ((a: any, b: any) => number) – A function that defines the sort order.

Returns
PyMutableSequence – A reference to the same PyMutableSequence

PyMutableSequence.splice(start, deleteCount, ...items)
The Array.splice() method changes the contents of a PyMutableSequence by removing or replacing
existing elements and/or adding new elements in place.

Arguments

• start (number) – Zero-based index at which to start changing the PyMutableSequence.

3.1. Using Pyodide 79

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/fill
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/pop
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/push
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/shift
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/splice
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number

Pyodide, Release 0.26.0.dev0

• deleteCount (number) – An integer indicating the number of elements in the
PyMutableSequence to remove from start.

• items (any[]) – The elements to add to the PyMutableSequence, beginning from start.

Returns
any[] – An array containing the deleted elements.

PyMutableSequence.unshift(...elts)
The Array.unshift() method adds the specified elements to the beginning of a PyMutableSequence.

Arguments

• elts (any[]) – The elements to add to the front of the PyMutableSequence.

Returns
any – The new length of the PyMutableSequence.

class pyodide.ffi.PyProxy()

A PyProxy is an object that allows idiomatic use of a Python object from JavaScript. See Proxying from Python
into JavaScript.

PyProxy.type

type: string

The name of the type of the object.

Usually the value is "module.name" but for builtins or interpreter-defined types it is just "name". As
pseudocode this is:

ty = type(x)
if ty.__module__ == 'builtins' or ty.__module__ == "__main__":

return ty.__name__
else:

ty.__module__ + "." + ty.__name__

PyProxy.copy()

Make a new PyProxy pointing to the same Python object. Useful if the PyProxy is destroyed somewhere
else.

Returns
PyProxy

PyProxy.destroy(options)
Destroy the PyProxy. This will release the memory. Any further attempt to use the object will raise an
error.

In a browser supporting FinalizationRegistry, Pyodide will automatically destroy the PyProxy when
it is garbage collected, however there is no guarantee that the finalizer will be run in a timely manner so it
is better to destroy the proxy explicitly.

Arguments

• options.message (string) – The error message to print if use is attempted after destroy-
ing. Defaults to “Object has already been destroyed”.

• options.destroyRoundtrip (boolean) –

PyProxy.toJs(options)
Converts the PyProxy into a JavaScript object as best as possible. By default does a deep conversion, if
a shallow conversion is desired, you can use proxy.toJs({depth : 1}). See Explicit Conversion of
PyProxy for more info.

80 Chapter 3. Table of contents

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/unshift
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/FinalizationRegistry
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean

Pyodide, Release 0.26.0.dev0

Arguments

• options.depth (number) – How many layers deep to perform the conversion. Defaults
to infinite

• options.pyproxies (PyProxy[]) – If provided, toJs() will store all PyProxies created
in this list. This allows you to easily destroy all the PyProxies by iterating the list without
having to recurse over the generated structure. The most common use case is to create
a new empty list, pass the list as pyproxies, and then later iterate over pyproxies to
destroy all of created proxies.

• options.create_pyproxies (boolean) – If false, toJs() will throw a
ConversionError rather than producing a PyProxy.

• options.dict_converter ((array: Iterable<[key: string, value: any]>) => any) –
A function to be called on an iterable of pairs [key, value]. Convert this iterable of
pairs to the desired output. For instance, Object.fromEntries() would convert the dict
to an object, Array.from() converts it to an Array of pairs, and (it) => new Map(it)
converts it to a Map (which is the default behavior).

• options.default_converter ((obj: PyProxy, convert: (obj: PyProxy) => any,
cacheConversion: (obj: PyProxy, result: any) => void) => any) – Optional argument
to convert objects with no default conversion. See the documentation of to_js().

Returns
any – The JavaScript object resulting from the conversion.

PyProxy.toString()

Returns str(o) (unless pyproxyToStringRepr: true was passed to loadPyodide() in which case
it will return repr(o))

Returns
string

class pyodide.ffi.PyProxyWithGet()

A PyProxy whose proxied Python object has a __getitem__() method.

Extends:

• PyProxy

PyProxyWithGet.asJsonAdaptor()

Returns the object treated as a json adaptor.

With a JsonAdaptor:

1. property access / modification / deletion is implemented with __getitem__(), __setitem__(),
and __delitem__() respectively.

2. If an attribute is accessed and the result implements __getitem__() then the result will also be
a json adaptor.

For instance, JSON.stringify(proxy.asJsonAdaptor()) acts like an inverse to Python’s json.
loads().

Returns
PyProxy

PyProxyWithGet.get(key)
This translates to the Python code obj[key].

Arguments

3.1. Using Pyodide 81

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols#the_iterable_protocol
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/fromEntries
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/functions.html#void
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://docs.python.org/3.11/reference/datamodel.html#object.__getitem__
https://docs.python.org/3.11/reference/datamodel.html#object.__getitem__
https://docs.python.org/3.11/reference/datamodel.html#object.__setitem__
https://docs.python.org/3.11/reference/datamodel.html#object.__delitem__
https://docs.python.org/3.11/reference/datamodel.html#object.__getitem__

Pyodide, Release 0.26.0.dev0

• key (any) – The key to look up.

Returns
any – The corresponding value.

class pyodide.ffi.PyProxyWithHas()

A PyProxy whose proxied Python object has a __contains__() method.

Extends:

• PyProxy

PyProxyWithHas.has(key)
This translates to the Python code key in obj.

Arguments

• key (any) – The key to check for.

Returns
boolean – Is key present?

class pyodide.ffi.PyProxyWithLength()

A PyProxy whose proxied Python object has a __len__() method.

Extends:

• PyProxy

PyProxyWithLength.length

type: number

The length of the object.

class pyodide.ffi.PyProxyWithSet()

A PyProxy whose proxied Python object has a __setitem__() or __delitem__() method.

Extends:

• PyProxy

PyProxyWithSet.delete(key)
This translates to the Python code del obj[key].

Arguments

• key (any) – The key to delete.

PyProxyWithSet.set(key, value)
This translates to the Python code obj[key] = value.

Arguments

• key (any) – The key to set.

• value (any) – The value to set it to.

class pyodide.ffi.PySequence()

A PyProxy whose proxied Python object is an Sequence (i.e., a list)

Extends:

• PyProxy

82 Chapter 3. Table of contents

https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://docs.python.org/3.11/reference/datamodel.html#object.__contains__
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://docs.python.org/3.11/reference/datamodel.html#object.__len__
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://docs.python.org/3.11/reference/datamodel.html#object.__setitem__
https://docs.python.org/3.11/reference/datamodel.html#object.__delitem__
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3.11/library/stdtypes.html#list

Pyodide, Release 0.26.0.dev0

PySequence.asJsonAdaptor()

Returns the object treated as a json adaptor.

With a JsonAdaptor:

1. property access / modification / deletion is implemented with __getitem__(), __setitem__(),
and __delitem__() respectively.

2. If an attribute is accessed and the result implements __getitem__() then the result will also be
a json adaptor.

For instance, JSON.stringify(proxy.asJsonAdaptor()) acts like an inverse to Python’s json.
loads().

Returns
PyProxy

PySequence.at(index)
See Array.at(). Takes an integer value and returns the item at that index.

Arguments

• index (number) – Zero-based index of the Sequence element to be returned, converted to
an integer. Negative index counts back from the end of the Sequence.

Returns
any – The element in the Sequence matching the given index.

PySequence.concat(...rest)
The Array.concat() method is used to merge two or more arrays. This method does not change the
existing arrays, but instead returns a new array.

Arguments

• rest (ConcatArray<any>[]) – Arrays and/or values to concatenate into a new array.

Returns
any[] – A new Array instance.

PySequence.entries()

The Array.entries() method returns a new iterator object that contains the key/value pairs for each
index in the Sequence.

Returns
IterableIterator<[number, any]> – A new iterator object.

PySequence.every(predicate, thisArg)
See Array.every(). Tests whether every element in the Sequence passes the test implemented by the
provided function.

Arguments

• predicate ((value: any, index: number, array: any[]) => unknown) –

• thisArg (any) – A value to use as this when executing predicate.

Returns
boolean

PySequence.filter(predicate, thisArg)
See Array.filter(). Creates a shallow copy of a portion of a given Sequence, filtered down to just the
elements from the given array that pass the test implemented by the provided function.

Arguments

3.1. Using Pyodide 83

https://docs.python.org/3.11/reference/datamodel.html#object.__getitem__
https://docs.python.org/3.11/reference/datamodel.html#object.__setitem__
https://docs.python.org/3.11/reference/datamodel.html#object.__delitem__
https://docs.python.org/3.11/reference/datamodel.html#object.__getitem__
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/at
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/concat
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/entries
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/every
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter

Pyodide, Release 0.26.0.dev0

• predicate ((elt: any, index: number, array: any) => boolean) –

• thisArg (any) – A value to use as this when executing predicate.

Returns
any[]

PySequence.find(predicate, thisArg)
The Array.find() method returns the first element in the provided array that satisfies the provided testing
function.

Arguments

• predicate ((value: any, index: number, obj: any[]) => any) – A function to execute
for each element in the Sequence. It should return a truthy value to indicate a matching
element has been found, and a falsy value otherwise.

• thisArg (any) – A value to use as this when executing predicate.

Returns
any – The first element in the Sequence that satisfies the provided testing function.

PySequence.findIndex(predicate, thisArg)
The Array.findIndex() method returns the index of the first element in the provided array that satisfies
the provided testing function.

Arguments

• predicate ((value: any, index: number, obj: any[]) => any) – A function to execute
for each element in the Sequence. It should return a truthy value to indicate a matching
element has been found, and a falsy value otherwise.

• thisArg (any) – A value to use as this when executing predicate.

Returns
number – The index of the first element in the Sequence that satisfies the provided testing
function.

PySequence.forEach(callbackfn, thisArg)
See Array.forEach(). Executes a provided function once for each Sequence element.

Arguments

• callbackfn ((elt: any) => void) – A function to execute for each element in the
Sequence. Its return value is discarded.

• thisArg (any) – A value to use as this when executing callbackFn.

PySequence.includes(elt)
The Array.includes() method determines whether a Sequence includes a certain value among its en-
tries, returning true or false as appropriate.

Arguments

• elt (any) –

Returns
any

PySequence.indexOf(elt, fromIndex)
See Array.indexOf(). Returns the first index at which a given element can be found in the Sequence, or
-1 if it is not present.

Arguments

84 Chapter 3. Table of contents

https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/find
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/findIndex
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/functions.html#void
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/includes
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/indexOf

Pyodide, Release 0.26.0.dev0

• elt (any) – Element to locate in the Sequence.

• fromIndex (number) – Zero-based index at which to start searching, converted to an in-
teger. Negative index counts back from the end of the Sequence.

Returns
number – The first index of the element in the Sequence; -1 if not found.

PySequence.join(separator)
See Array.join(). The Array.join() method creates and returns a new string by concatenating all of
the elements in the Sequence.

Arguments

• separator (string) – A string to separate each pair of adjacent elements of the Sequence.

Returns
string – A string with all Sequence elements joined.

PySequence.keys()

The Array.keys() method returns a new iterator object that contains the keys for each index in the
Sequence.

Returns
IterableIterator<number> – A new iterator object.

PySequence.lastIndexOf(elt, fromIndex)
See Array.lastIndexOf(). Returns the last index at which a given element can be found in the Sequence,
or -1 if it is not present.

Arguments

• elt (any) – Element to locate in the Sequence.

• fromIndex (number) – Zero-based index at which to start searching backwards, converted
to an integer. Negative index counts back from the end of the Sequence.

Returns
number – The last index of the element in the Sequence; -1 if not found.

PySequence.map(callbackfn, thisArg)
See Array.map(). Creates a new array populated with the results of calling a provided function on every
element in the calling Sequence.

Type parameters
U –

Arguments

• callbackfn ((elt: any, index: number, array: any) => U) – A function to execute for each
element in the Sequence. Its return value is added as a single element in the new array.

• thisArg (any) – A value to use as this when executing callbackFn.

Returns
U[]

PySequence.reduce(callbackfn, initialValue)
See Array.reduce(). Executes a user-supplied “reducer” callback function on each element of the Se-
quence, in order, passing in the return value from the calculation on the preceding element. The final result
of running the reducer across all elements of the Sequence is a single value.

Arguments

3.1. Using Pyodide 85

https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/join
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/join
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Sequence
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/keys
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/lastIndexOf
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce

Pyodide, Release 0.26.0.dev0

• callbackfn ((previousValue: any, currentValue: any, currentIndex: number, array:
any) => any) – A function to execute for each element in the Sequence. Its return value
is discarded.

• initialValue (any) –

Returns
any

PySequence.reduceRight(callbackfn, initialValue)
See Array.reduceRight(). Applies a function against an accumulator and each value of the Sequence
(from right to left) to reduce it to a single value.

Arguments

• callbackfn ((previousValue: any, currentValue: any, currentIndex: number, array:
any) => any) – A function to execute for each element in the Sequence. Its return value is
discarded.

• initialValue (any) –

Returns
any

PySequence.slice(start, stop)
See Array.slice(). The Array.slice() method returns a shallow copy of a portion of a Sequence
into a new array object selected from start to stop (stop not included)

Arguments

• start (number) – Zero-based index at which to start extraction. Negative index counts
back from the end of the Sequence.

• stop (number) – Zero-based index at which to end extraction. Negative index counts back
from the end of the Sequence.

Returns
any – A new array containing the extracted elements.

PySequence.some(predicate, thisArg)
See Array.some(). Tests whether at least one element in the Sequence passes the test implemented by
the provided function.

Arguments

• predicate ((value: any, index: number, array: any[]) => unknown) –

• thisArg (any) – A value to use as this when executing predicate.

Returns
boolean

PySequence.toJSON(this)

Arguments

• this (any) –

Returns
unknown[]

PySequence.values()

The Array.values() method returns a new iterator object that contains the values for each index in the
Sequence.

86 Chapter 3. Table of contents

https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduceRight
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/slice
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/slice
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Sequence
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/some
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/values

Pyodide, Release 0.26.0.dev0

Returns
IterableIterator<any> – A new iterator object.

class pyodide.ffi.PythonError()

A JavaScript error caused by a Python exception.

In order to reduce the risk of large memory leaks, the PythonError contains no reference to the Python exception
that caused it. You can find the actual Python exception that caused this error as sys.last_exc.

See type translations of errors for more information.

Avoid leaking stack Frames

If you make a PyProxy of sys.last_exc, you should be especially careful to destroy() it when you are done.
You may leak a large amount of memory including the local variables of all the stack frames in the traceback if
you don’t. The easiest way is to only handle the exception in Python.

PythonError.type

type: string

The name of the Python error class, e.g, RuntimeError or KeyError.

pyodide.canvas

This provides APIs to set a canvas for rendering graphics.

For example, you need to set a canvas if you want to use the SDL library. See Using SDL-based packages in Pyodide
for more information.

Functions:

getCanvas2D() Get the HTML5 canvas element used for 2D rendering.
getCanvas3D() Get the HTML5 canvas element used for 3D rendering.
setCanvas2D(canvas) Set the HTML5 canvas element to use for 2D rendering.
setCanvas3D(canvas) Set the HTML5 canvas element to use for 3D rendering.

pyodide.canvas.getCanvas2D()

Get the HTML5 canvas element used for 2D rendering. For now, Emscripten only supports one canvas element,
so getCanvas2D and getCanvas3D are the same.

Returns
undefined | HTMLCanvasElement

pyodide.canvas.getCanvas3D()

Get the HTML5 canvas element used for 3D rendering. For now, Emscripten only supports one canvas element,
so getCanvas2D and getCanvas3D are the same.

Returns
undefined | HTMLCanvasElement

pyodide.canvas.setCanvas2D(canvas)
Set the HTML5 canvas element to use for 2D rendering. For now, Emscripten only supports one canvas element,
so setCanvas2D and setCanvas3D are the same.

Arguments

3.1. Using Pyodide 87

https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://docs.python.org/3.11/library/exceptions.html#RuntimeError
https://docs.python.org/3.11/library/exceptions.html#KeyError
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en-US/docs/Web/API/HTMLCanvasElement
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en-US/docs/Web/API/HTMLCanvasElement

Pyodide, Release 0.26.0.dev0

• canvas (HTMLCanvasElement) –

pyodide.canvas.setCanvas3D(canvas)
Set the HTML5 canvas element to use for 3D rendering. For now, Emscripten only supports one canvas element,
so setCanvas2D and setCanvas3D are the same.

Arguments

• canvas (HTMLCanvasElement) –

Python API

Backward compatibility of the API is not guaranteed at this point.

JavaScript Modules

By default there are two JavaScript modules. More can be added with pyodide.registerJsModule(). You can
import these modules using the Python import statement in the normal way.

js The global JavaScript scope.
pyodide_js The JavaScript Pyodide module.

Python Modules

pyodide.
code

Utilities for evaluating Python and JavaScript code.

pyodide.
console

Similar to the Python builtin code module but handles top level await. Used for implementing the
Pyodide console.

pyodide.
ffi

The JsProxy class and utilities to help interact with JavaScript code.

pyodide.
http

Defines pyfetch() and other functions for making network requests.

pyodide.
webloop

The Pyodide event loop implementation. This is automatically configured correctly for most use
cases it is unlikely you will need it outside of niche use cases.

pyodide.code

Classes:

CodeRunner(source, *[, return_mode, mode, ...]) This class allows fine control over the execution of a code
block.

Functions:

88 Chapter 3. Table of contents

https://developer.mozilla.org/en-US/docs/Web/API/HTMLCanvasElement
https://developer.mozilla.org/en-US/docs/Web/API/HTMLCanvasElement

Pyodide, Release 0.26.0.dev0

eval_code(source[, globals, locals, ...]) Runs a string as Python source code.
eval_code_async(source[, globals, locals, ...]) Runs a code string asynchronously.
find_imports(source) Finds the imports in a Python source code string
relaxed_call(func, *args, **kwargs) Call the function ignoring extra arguments
relaxed_wrap(func) Decorator which creates a function that ignores extra ar-

guments
run_js(code, /) A wrapper for the eval() function.
should_quiet(source, /) Should we suppress output?

class pyodide.code.CodeRunner(source, *, return_mode='last_expr', mode='exec',
quiet_trailing_semicolon=True, filename='<exec>', flags=0)

This class allows fine control over the execution of a code block.

It is primarily intended for REPLs and other sophisticated consumers that may wish to add their own AST
transformations, separately signal to the user when parsing is complete, etc. The simpler eval_code() and
eval_code_async() apis should be preferred when their flexibility suffices.

Parameters

• source (str) – The Python source code to run.

• return_mode (Literal['last_expr', 'last_expr_or_assign', 'none']) – Specifies
what should be returned. The options are:

’last_expr’
return the last expression

’last_expr_or_assign’
return the last expression or the last assignment.

’none’
always return None.

• quiet_trailing_semicolon (bool) – Specifies whether a trailing semicolon should sup-
press the result or not. When this is True executing "1+1;" returns None, when it is False,
executing "1+1;" return 2. True by default.

• filename (str) – The file name to use in error messages and stack traces. '<exec>' by
default.

• mode (str) – The “mode” to compile in. One of "exec", "single", or "eval". Defaults
to "exec". For most purposes it’s unnecessary to use this argument. See the documentation
for the built-in compile() function.

• flags (int) – The flags to compile with. See the documentation for the built-in compile()
function.

Examples

>>> source = "1 + 1"
>>> code_runner = CodeRunner(source)
>>> code_runner.compile()
<_pyodide._base.CodeRunner object at 0x...>
>>> code_runner.run()
2
>>> my_globals = {"x": 20}

(continues on next page)

3.1. Using Pyodide 89

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/typing.html#typing.Literal
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#compile
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#compile

Pyodide, Release 0.26.0.dev0

(continued from previous page)

>>> my_locals = {"y": 5}
>>> source = "x + y"
>>> code_runner = CodeRunner(source)
>>> code_runner.compile()
<_pyodide._base.CodeRunner object at 0x...>
>>> code_runner.run(globals=my_globals, locals=my_locals)
25

ast: Module

The ast from parsing source. If you wish to do an ast transform, modify this variable before calling
CodeRunner.compile().

code: Optional[CodeType]

Once you call CodeRunner.compile() the compiled code will be available in the code field. You can
modify this variable before calling CodeRunner.run() to do a code transform.

compile()

Compile the current value of self.ast and store the result in self.code.

Can only be used once. Returns self (chainable).

Return type
CodeRunner

run(globals=None, locals=None)
Executes self.code.

Can only be used after calling compile. The code may not use top level await, use CodeRunner.
run_async() for code that uses top level await.

Parameters

• globals (Optional[dict[str, Any]]) – The global scope in which to execute code. This
is used as the globals parameter for exec(). If globals is absent, a new empty dictio-
nary is used.

• locals (Optional[dict[str, Any]]) – The local scope in which to execute code. This is
used as the locals parameter for exec(). If locals is absent, the value of globals is
used.

Return type
Any

Returns
If the last nonwhitespace character of source is a semicolon, return None. If the last
statement is an expression, return the result of the expression. Use the return_mode and
quiet_trailing_semicolon parameters to modify this default behavior.

async run_async(globals=None, locals=None)
Runs self.code which may use top level await.

Can only be used after calling CodeRunner.compile(). If self.code uses top level await, automatically
awaits the resulting coroutine.

Parameters

• globals (Optional[dict[str, Any]]) – The global scope in which to execute code. This
is used as the globals parameter for exec(). If globals is absent, a new empty dictio-
nary is used.

90 Chapter 3. Table of contents

https://docs.python.org/3/library/ast.html#module-ast
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/types.html#types.CodeType
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/stdtypes.html#dict
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/functions.html#exec
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/stdtypes.html#dict
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/functions.html#exec
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/stdtypes.html#dict
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/functions.html#exec

Pyodide, Release 0.26.0.dev0

• locals (Optional[dict[str, Any]]) – The local scope in which to execute code. This is
used as the locals parameter for exec(). If locals is absent, the value of globals is
used.

Return type
Any

Returns
If the last nonwhitespace character of source is a semicolon, return None. If the last
statement is an expression, return the result of the expression. Use the return_mode and
quiet_trailing_semicolon parameters to modify this default behavior.

pyodide.code.eval_code(source, globals=None, locals=None, *, return_mode='last_expr',
quiet_trailing_semicolon=True, filename='<exec>', flags=0)

Runs a string as Python source code.

Parameters

• source (str) – The Python source code to run.

• globals (Optional[dict[str, Any]]) – The global scope in which to execute code. This
is used as the globals parameter for exec(). If globals is absent, a new empty dictionary
is used.

• locals (Optional[dict[str, Any]]) – The local scope in which to execute code. This is
used as the locals parameter for exec(). If locals is absent, the value of globals is
used.

• return_mode (Literal['last_expr', 'last_expr_or_assign', 'none']) – Specifies
what should be returned. The options are:

’last_expr’
return the last expression

’last_expr_or_assign’
return the last expression or the last assignment.

’none’
always return None.

• quiet_trailing_semicolon (bool) – Specifies whether a trailing semicolon should sup-
press the result or not. When this is True executing "1+1 ;" returns None, when it is False,
executing "1+1 ;" return 2. True by default.

• filename (str) – The file name to use in error messages and stack traces. '<exec>' by
default.

• flags (int) – The flags to compile with. See the documentation for the built-in compile()
function.

Return type
Any

Returns
If the last nonwhitespace character of source is a semicolon, return None. If the last
statement is an expression, return the result of the expression. Use the return_mode and
quiet_trailing_semicolon parameters to modify this default behavior.

3.1. Using Pyodide 91

https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/stdtypes.html#dict
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/functions.html#exec
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/stdtypes.html#dict
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/functions.html#exec
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/stdtypes.html#dict
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/functions.html#exec
https://docs.python.org/3.11/library/typing.html#typing.Literal
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#compile
https://docs.python.org/3.11/library/typing.html#typing.Any

Pyodide, Release 0.26.0.dev0

Examples

>>> source = "1 + 1"
>>> eval_code(source)
2
>>> source = "1 + 1;"
>>> eval_code(source, quiet_trailing_semicolon=True)
>>> eval_code(source, quiet_trailing_semicolon=False)
2
>>> my_globals = { "y": "100" }
>>> my_locals = { "y": "200" }
>>> source = "print(locals()['y'], globals()['y'])"
>>> eval_code(source, globals=my_globals, locals=my_locals)
200 100
>>> source = "test = 1 + 1"
>>> eval_code(source, return_mode="last_expr_or_assign")
2
>>> eval_code(source, return_mode="last_expr")
>>> eval_code(source, return_mode="none")
>>> source = "print(pyodide)" # Pretend this is open('example_of_filename.py', 'r').
→˓read()
>>> eval_code(source, filename="example_of_filename.py")
Traceback (most recent call last):

...
File "example_of_filename.py", line 1, in <module>

print(pyodide)
^^^^^^^

NameError: name 'pyodide' is not defined

async pyodide.code.eval_code_async(source, globals=None, locals=None, *, return_mode='last_expr',
quiet_trailing_semicolon=True, filename='<exec>', flags=0)

Runs a code string asynchronously.

Uses ast.PyCF_ALLOW_TOP_LEVEL_AWAIT to compile the code.

Parameters

• source (str) – The Python source code to run.

• globals (Optional[dict[str, Any]]) – The global scope in which to execute code. This
is used as the globals parameter for exec(). If globals is absent, a new empty dictionary
is used.

• locals (Optional[dict[str, Any]]) – The local scope in which to execute code. This is
used as the locals parameter for exec(). If locals is absent, the value of globals is
used.

• return_mode (Literal['last_expr', 'last_expr_or_assign', 'none']) – Specifies
what should be returned. The options are:

’last_expr’
return the last expression

’last_expr_or_assign’
return the last expression or the last assignment.

’none’
always return None.

92 Chapter 3. Table of contents

https://docs.python.org/3.11/library/ast.html#ast.PyCF_ALLOW_TOP_LEVEL_AWAIT
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/stdtypes.html#dict
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/functions.html#exec
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/stdtypes.html#dict
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/functions.html#exec
https://docs.python.org/3.11/library/typing.html#typing.Literal

Pyodide, Release 0.26.0.dev0

• quiet_trailing_semicolon (bool) – Specifies whether a trailing semicolon should sup-
press the result or not. When this is True executing "1+1 ;" returns None, when it is False,
executing "1+1 ;" return 2. True by default.

• filename (str) – The file name to use in error messages and stack traces. '<exec>' by
default.

• flags (int) – The flags to compile with. See the documentation for the built-in compile()
function.

Return type
Any

Returns
If the last nonwhitespace character of source is a semicolon, return None. If the last
statement is an expression, return the result of the expression. Use the return_mode and
quiet_trailing_semicolon parameters to modify this default behavior.

pyodide.code.find_imports(source)
Finds the imports in a Python source code string

Parameters
source (str) – The Python source code to inspect for imports.

Return type
list[str]

Returns
A list of module names that are imported in source. If source is not syntactically correct
Python code (after dedenting), returns an empty list.

Examples

>>> source = "import numpy as np; import scipy.stats"
>>> find_imports(source)
['numpy', 'scipy']

pyodide.code.relaxed_call(func, *args, **kwargs)
Call the function ignoring extra arguments

If extra positional or keyword arguments are provided they will be discarded.

Parameters

• func (Callable[..., RetType]) –

• args (Any) –

• kwargs (Any) –

Return type
RetType

pyodide.code.relaxed_wrap(func)
Decorator which creates a function that ignores extra arguments

If extra positional or keyword arguments are provided they will be discarded.

Parameters
func (Callable[[ParamSpec(Param, bound= None)], RetType]) –

3.1. Using Pyodide 93

https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#compile
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/constants.html#Ellipsis
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/typing.html#typing.ParamSpec
https://docs.python.org/3.11/library/constants.html#None

Pyodide, Release 0.26.0.dev0

Return type
Callable[..., RetType]

pyodide.code.run_js(code, /)
A wrapper for the eval() function.

Runs code as a Javascript code string and returns the result. Unlike eval(), if code is not a string we raise a
TypeError.

Parameters
code (str) –

Return type
Any

pyodide.code.should_quiet(source, /)
Should we suppress output?

Return type
bool

Returns
True if the last nonwhitespace character of source is a semicolon.

Examples

>>> should_quiet('1 + 1')
False
>>> should_quiet('1 + 1 ;')
True
>>> should_quiet('1 + 1 # comment ;')
False

Parameters
source (str) –

pyodide.console

Classes:

Console([globals, stdin_callback, ...]) Interactive Pyodide console
ConsoleFuture(syntax_check) A future with extra fields used as the return value for

Console apis.
PyodideConsole([globals, stdin_callback, ...]) A subclass of Console that uses pyodide.

loadPackagesFromImports() before running
the code.

Functions:

repr_shorten(value[, limit, split, separator]) Compute the string representation of value and shorten
it if necessary.

94 Chapter 3. Table of contents

https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/constants.html#Ellipsis
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
https://docs.python.org/3.11/library/exceptions.html#TypeError
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#str

Pyodide, Release 0.26.0.dev0

class pyodide.console.Console(globals=None, *, stdin_callback=None, stdout_callback=None,
stderr_callback=None, persistent_stream_redirection=False,
filename='<console>')

Interactive Pyodide console

An interactive console based on the Python standard library InteractiveConsole that manages stream redi-
rections and asynchronous execution of the code.

The stream callbacks can be modified directly by assigning to stdin_callback (for example) as long as
persistent_stream_redirection is False.

Parameters

• globals (Optional[dict[str, Any]]) – The global namespace in which to evaluate the
code. Defaults to a new empty dictionary.

• stdin_callback (Optional[Callable[[int], str]]) – Function to call at each read from
sys.stdin. Defaults to None.

• stdout_callback (Optional[Callable[[str], None]]) – Function to call at each write
to sys.stdout. Defaults to None.

• stderr_callback (Optional[Callable[[str], None]]) – Function to call at each write
to sys.stderr. Defaults to None.

• persistent_stream_redirection (bool) – Should redirection of standard streams be
kept between calls to runcode()? Defaults to False.

• filename (str) – The file name to report in error messages. Defaults to "<console>".

buffer: list[str]

The list of lines of code that have been the argument to push().

This is emptied whenever the code is executed.

complete(source)
Use Python’s rlcompleter to complete the source string using the Console.globals namespace.

Finds the last “word” in the source string and completes it with rlcompleter. Word breaks are determined
by the set of characters in completer_word_break_characters.

Parameters
source (str) – The source string to complete at the end.

Return type
tuple[list[str], int]

Returns

• completions (list[str]) – A list of completion strings.

• start (int) – The index where completion starts.

3.1. Using Pyodide 95

https://docs.python.org/3.11/library/code.html#code.InteractiveConsole
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/stdtypes.html#dict
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/sys.html#sys.stdin
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/sys.html#sys.stdout
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/sys.html#sys.stderr
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/constants.html#False
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/rlcompleter.html#module-rlcompleter
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#tuple
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#int

Pyodide, Release 0.26.0.dev0

Examples

>>> shell = Console()
>>> shell.complete("str.isa")
(['str.isalnum(', 'str.isalpha(', 'str.isascii('], 0)
>>> shell.complete("a = 5 ; str.isa")
(['str.isalnum(', 'str.isalpha(', 'str.isascii('], 8)

completer_word_break_characters: str

The set of characters considered by complete() to be word breaks.

formatsyntaxerror(e)
Format the syntax error that just occurred.

This doesn’t include a stack trace because there isn’t one. The actual error object is stored into sys.
last_value.

Parameters
e (Exception) –

Return type
str

formattraceback(e)
Format the exception that just occurred.

The actual error object is stored into sys.last_value.

Parameters
e (BaseException) –

Return type
str

globals: dict[str, Any]

The namespace used as the globals

persistent_redirect_streams()

Redirect stdin/stdout/stdout persistently

Return type
None

persistent_restore_streams()

Restore stdin/stdout/stdout if they have been persistently redirected

Return type
None

push(line)
Push a line to the interpreter.

The line should not have a trailing newline; it may have internal newlines. The line is appended to a buffer
and the interpreter’s runsource()method is called with the concatenated contents of the buffer as source.
If this indicates that the command was executed or invalid, the buffer is reset; otherwise, the command is
incomplete, and the buffer is left as it was after the line was appended.

The return value is the result of calling runsource() on the current buffer contents.

Parameters
line (str) –

96 Chapter 3. Table of contents

https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/sys.html#sys.last_value
https://docs.python.org/3.11/library/sys.html#sys.last_value
https://docs.python.org/3.11/library/exceptions.html#Exception
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/sys.html#sys.last_value
https://docs.python.org/3.11/library/exceptions.html#BaseException
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#dict
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/sys.html#sys.stdin
https://docs.python.org/3.11/library/sys.html#sys.stdout
https://docs.python.org/3.11/library/sys.html#sys.stdout
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/sys.html#sys.stdin
https://docs.python.org/3.11/library/sys.html#sys.stdout
https://docs.python.org/3.11/library/sys.html#sys.stdout
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/stdtypes.html#str

Pyodide, Release 0.26.0.dev0

Return type
ConsoleFuture

redirect_streams()

A context manager to redirect standard streams.

This supports nesting.

Return type
Generator[None, None, None]

async runcode(source, code)
Execute a code object and return the result.

Parameters

• source (str) –

• code (CodeRunner) –

Return type
Any

runsource(source, filename='<console>')
Compile and run source code in the interpreter.

Parameters

• source (str) –

• filename (str) –

Return type
ConsoleFuture

stderr_callback: Optional[Callable[[str], None]]

Function to call at each write to sys.stderr.

stdin_callback: Optional[Callable[[int], str]]

The function to call at each read from sys.stdin

stdout_callback: Optional[Callable[[str], None]]

Function to call at each write to sys.stdout.

class pyodide.console.ConsoleFuture(syntax_check)
A future with extra fields used as the return value for Console apis.

Parameters
syntax_check (Literal['incomplete', 'syntax-error', 'complete']) –

formatted_error: Optional[str]

If the Future is rejected, this will be filled with a formatted version of the code. This is a convenience that
simplifies code and helps to avoid large memory leaks when using from JavaScript.

syntax_check: Literal['incomplete', 'syntax-error', 'complete']

The status of the future. The values mean the following:

‘incomplete’
Input is incomplete. The future has already been resolved with result None.

‘syntax-error’
Input contained a syntax error. The future has been rejected with a SyntaxError.

3.1. Using Pyodide 97

https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Generator
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/sys.html#sys.stderr
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/sys.html#sys.stdin
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/sys.html#sys.stdout
https://docs.python.org/3.11/library/typing.html#typing.Literal
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/typing.html#typing.Literal

Pyodide, Release 0.26.0.dev0

‘complete’
The input complete and syntactically correct and asynchronous execution has begun. When
the execution is done, the Future will be resolved with the result or rejected with an exception.

class pyodide.console.PyodideConsole(globals=None, *, stdin_callback=None, stdout_callback=None,
stderr_callback=None, persistent_stream_redirection=False,
filename='<console>')

A subclass of Console that uses pyodide.loadPackagesFromImports() before running the code.

Parameters

• globals (Optional[dict[str, Any]]) –

• stdin_callback (Optional[Callable[[int], str]]) –

• stdout_callback (Optional[Callable[[str], None]]) –

• stderr_callback (Optional[Callable[[str], None]]) –

• persistent_stream_redirection (bool) –

• filename (str) –

pyodide.console.repr_shorten(value, limit=1000, split=None, separator='...')
Compute the string representation of value and shorten it if necessary.

This is equivalent to shorten(repr(value), limit, split, separator), but a value error is raised if
limit is less than 4.

Examples

>>> from pyodide.console import repr_shorten
>>> sep = "_"
>>> repr_shorten("abcdefg", limit=8, separator=sep)
"'abc_efg'"
>>> repr_shorten("abcdefg", limit=12, separator=sep)
"'abcdefg'"
>>> for i in range(4, 10):
... repr_shorten(123456789, limit=i, separator=sep)
'12_89'
'12_89'
'123_789'
'123_789'
'1234_6789'
'123456789'

Parameters

• value (Any) –

• limit (int) –

• split (Optional[int]) –

• separator (str) –

Return type
str

98 Chapter 3. Table of contents

https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/stdtypes.html#dict
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str

Pyodide, Release 0.26.0.dev0

pyodide.ffi

Exceptions:

ConversionError An error thrown when conversion between JavaScript
and Python fails.

JsException(*args, **kwargs) A JavaScript Error.

Classes:

JsArray() A JsProxy of an Array, NodeList, or TypedArray
JsAsyncGenerator() A JavaScript AsyncGenerator
JsAsyncIterable() A JavaScript async iterable object
JsAsyncIterator() A JsProxy of a JavaScript async iterator.
JsBuffer() A JsProxy of an array buffer or array buffer view
JsCallable()

JsDomElement()

JsDoubleProxy() A double proxy created with create_proxy().
JsFetchResponse() A JsFetchResponse object represents a Response to

a fetch() request.
JsGenerator() A JavaScript generator
JsIterable() A JavaScript iterable object
JsIterator() A JsProxy of a JavaScript iterator.
JsMap() A JavaScript Map
JsMutableMap() A JavaScript mutable map
JsPromise() A JsProxy of a Promise or some other thenable

JavaScript object.
JsProxy() A proxy to make a JavaScript object behave like a Python

object
JsTypedArray()

Functions:

create_once_callable(obj, /, *[, _may_syncify]) Wrap a Python Callable in a JavaScript function that can
be called once.

create_proxy(obj, /, *[, capture_this, ...]) Create a JsProxy of a PyProxy.
destroy_proxies(pyproxies, /) Destroy all PyProxies in a JavaScript array.
register_js_module(name, jsproxy) Registers jsproxy as a JavaScript module named name.
run_sync(x) Block until an awaitable is resolved.
to_js(obj, /, *[, depth, pyproxies, ...]) Convert the object to JavaScript.
unregister_js_module(name) Unregisters a JavaScript module with given

name that has been previously registered with
pyodide.registerJsModule() or pyodide.
ffi.register_js_module().

exception pyodide.ffi.ConversionError

Bases: Exception

3.1. Using Pyodide 99

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/API/NodeList
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/AsyncGenerator
https://developer.mozilla.org/en-US/docs/Web/API/Response
https://developer.mozilla.org/en-US/docs/Web/API/fetch
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise#thenables
https://docs.python.org/3.11/library/exceptions.html#Exception

Pyodide, Release 0.26.0.dev0

An error thrown when conversion between JavaScript and Python fails.

class pyodide.ffi.JsArray

Bases: JsIterable[T], Generic[T], MutableSequence[T]

A JsProxy of an Array, NodeList, or TypedArray

append(object)
Append object to the end of the list.

Parameters
object (T) –

Return type
None

count(x)
Return the number of times x appears in the list.

Parameters
x (T) –

Return type
int

extend(other, /)
Extend array by appending elements from the iterable.

Parameters
other (Iterable[T]) –

Return type
None

index(value, start=0, stop=9223372036854775807)
Return first index at which value appears in the Array.

Raises ValueError if the value is not present.

Parameters

• value (T) –

• start (int) –

• stop (int) –

Return type
int

insert(index, value)
Insert an item at a given position.

The first argument is the index of the element before which to insert, so a.insert(0, x) inserts at the
front of the list, and a.insert(len(a), x) is equivalent to a.append(x).

Parameters

• index (int) –

• value (T) –

Return type
None

100 Chapter 3. Table of contents

https://docs.python.org/3.11/library/typing.html#typing.Generic
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.MutableSequence
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/API/NodeList
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/exceptions.html#ValueError
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/constants.html#None

Pyodide, Release 0.26.0.dev0

pop(index=-1)
Remove and return the item at index (default last).

Raises IndexError if list is empty or index is out of range.

Parameters
index (int) –

Return type
T

remove(value)
Remove the first item from the list whose value is equal to x.

It raises a ValueError if there is no such item.

Parameters
value (T) –

Return type
None

reverse()

Reverse the array in place.

Return type
None

to_py(*, depth=-1, default_converter=None)
Convert the JsProxy to a native Python object as best as possible.

See JavaScript to Python for more information.

Parameters

• depth (int) – Limit the depth of the conversion. If a shallow conversion is desired, set
depth to 1.

• default_converter (Optional[Callable[[JsProxy, Callable[[JsProxy], Any],
Callable[[JsProxy, Any], None]], Any]]) – If present, this will be invoked whenever
Pyodide does not have some built in conversion for the object. If default_converter
raises an error, the error will be allowed to propagate. Otherwise, the object returned will
be used as the conversion. default_converter takes three arguments. The first argument
is the value to be converted.

Return type
list[Any]

Examples

Here are a couple examples of converter functions. In addition to the normal conversions, convert Date to
datetime:

from datetime import datetime
def default_converter(value, _ignored1, _ignored2):

if value.constructor.name == "Date":
return datetime.fromtimestamp(d.valueOf()/1000)

return value

Don’t create any JsProxies, require a complete conversion or raise an error:

3.1. Using Pyodide 101

https://docs.python.org/3.11/library/exceptions.html#IndexError
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/exceptions.html#ValueError
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/typing.html#typing.Any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://docs.python.org/3.11/library/datetime.html#datetime.datetime

Pyodide, Release 0.26.0.dev0

def default_converter(_value, _ignored1, _ignored2):
raise Exception("Failed to completely convert object")

The second and third arguments are only needed for converting containers. The second argument is a
conversion function which is used to convert the elements of the container with the same settings. The
third argument is a “cache” function which is needed to handle self referential containers. Consider the
following example. Suppose we have a Javascript Pair class:

class Pair {
constructor(first, second){

this.first = first;
this.second = second;

}
}

We can use the following default_converter to convert Pair to list:

def default_converter(value, convert, cache):
if value.constructor.name != "Pair":

return value
result = []
cache(value, result);
result.append(convert(value.first))
result.append(convert(value.second))
return result

Note that we have to cache the conversion of value before converting value.first and value.second.
To see why, consider a self referential pair:

let p = new Pair(0, 0);
p.first = p;

Without cache(value, result);, converting p would lead to an infinite recurse. With it, we can suc-
cessfully convert p to a list such that l[0] is l.

class pyodide.ffi.JsAsyncGenerator

Bases: JsAsyncIterable[T_co], Generic[T_co, T_contra, V_co]

A JavaScript AsyncGenerator

A JavaScript object is treated as an async generator if it’s Symbol.toStringTag is "AsyncGenerator". Most
likely this will be because it is a true async generator produced by the JavaScript runtime, but it may be a custom
object trying hard to pretend to be an async generator. It should have next(), return(), and throw()methods.

aclose()

Raises a GeneratorExit at the point where the generator function was paused.

If the generator function then exits gracefully, is already closed, or raises GeneratorExit (by not catching
the exception), aclose() returns to its caller. If the generator yields a value, a RuntimeError is raised.
If the generator raises any other exception, it is propagated to the caller. aclose() does nothing if the
generator has already exited due to an exception or normal exit.

Return type
Awaitable[None]

102 Chapter 3. Table of contents

https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/typing.html#typing.Generic
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/AsyncGenerator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol/toStringTag
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/AsyncGenerator/next
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/AsyncGenerator/return
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/AsyncGenerator/throw
https://docs.python.org/3.11/library/exceptions.html#GeneratorExit
https://docs.python.org/3.11/library/exceptions.html#GeneratorExit
https://docs.python.org/3.11/library/exceptions.html#RuntimeError
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Awaitable
https://docs.python.org/3.11/library/constants.html#None

Pyodide, Release 0.26.0.dev0

asend(value, /)
Resumes the execution and “sends” a value into the async generator function.

The value argument becomes the result of the current yield expression. The awaitable returned by the
asend() method will return the next value yielded by the generator or raises StopAsyncIteration if
the asynchronous generator returns. If the generator returned a value, this value is discarded (because in
Python async generators cannot return a value).

When asend() is called to start the generator, the argument will be ignored. Unlike in Python, we cannot
detect that the generator hasn’t started yet, and no error will be thrown if the argument of a not-started
generator is not None.

Parameters
value (T_contra) –

Return type
Awaitable[T_co]

athrow(error, /)
Resumes the execution and raises an exception at the point where the generator was paused.

The awaitable returned by athrow() method will return the next value yielded by the generator or raises
StopAsyncIteration if the asynchronous generator returns. If the generator returned a value, this value
is discarded (because in Python async generators cannot return a value). If the generator function does not
catch the passed-in exception, or raises a different exception, then that exception propagates to the caller.

Parameters
error (BaseException) –

Return type
T_co

class pyodide.ffi.JsAsyncIterable

Bases: JsProxy, Generic[T_co]

A JavaScript async iterable object

A JavaScript object is async iterable if it has a Symbol.asyncIterator method.

class pyodide.ffi.JsAsyncIterator

Bases: JsProxy, Generic[T_co]

A JsProxy of a JavaScript async iterator.

An object is a JsAsyncIterator if it has a next() method and either has a Symbol.asyncIterator or has
no Symbol.iterator

class pyodide.ffi.JsBuffer

Bases: JsProxy

A JsProxy of an array buffer or array buffer view

assign(rhs, /)
Assign from a Python buffer into the JavaScript buffer.

Parameters
rhs (Any) –

Return type
None

3.1. Using Pyodide 103

https://docs.python.org/3.11/library/exceptions.html#StopAsyncIteration
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Awaitable
https://docs.python.org/3.11/library/exceptions.html#StopAsyncIteration
https://docs.python.org/3.11/library/exceptions.html#BaseException
https://docs.python.org/3.11/library/typing.html#typing.Generic
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol/asyncIterator
https://docs.python.org/3.11/library/typing.html#typing.Generic
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols#next_2
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol/asyncIterator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol/iterator
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/constants.html#None

Pyodide, Release 0.26.0.dev0

assign_to(to, /)
Assign to a Python buffer from the JavaScript buffer.

Parameters
to (Any) –

Return type
None

from_file(file, /)
Reads from a file into a buffer.

Will try to read a chunk of data the same size as the buffer from the current position of the file.

Example

>>> None
>>> from pathlib import Path
>>> Path("file.bin").write_text("abc\x00123ttt")
10
>>> from js import Uint8Array
>>> # the JsProxy need to be pre-allocated
>>> x = Uint8Array.new(10)
>>> with open('file.bin', 'rb') as fh:
... x.from_file(fh)

which is equivalent to

>>> x = Uint8Array.new(range(10))
>>> with open('file.bin', 'rb') as fh:
... chunk = fh.read(x.byteLength)
... x.assign(chunk)

but the latter copies the data twice whereas the former only copies the data once.

Parameters
file (Union[IO[bytes], IO[str]]) –

Return type
None

to_bytes()

Convert a buffer to a bytes object.

Copies the data once.

Return type
bytes

to_file(file, /)
Writes a buffer to a file.

Will write the entire contents of the buffer to the current position of the file.

104 Chapter 3. Table of contents

https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/typing.html#typing.Union
https://docs.python.org/3.11/library/typing.html#typing.IO
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/typing.html#typing.IO
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/stdtypes.html#bytes

Pyodide, Release 0.26.0.dev0

Example

>>> from js import Uint8Array
>>> from pathlib import Path
>>> Path("file.bin").write_text("abc\x00123ttt")
10
>>> x = Uint8Array.new(range(10))
>>> with open('file.bin', 'wb') as fh:
... x.to_file(fh)

This is equivalent to

>>> with open('file.bin', 'wb') as fh:
... data = x.to_bytes()
... fh.write(data)
10

but the latter copies the data twice whereas the former only copies the data once.

Parameters
file (Union[IO[bytes], IO[str]]) –

Return type
None

to_memoryview()

Convert a buffer to a memoryview.

Copies the data once. This currently has the same effect as to_py().

Return type
memoryview

to_string(encoding=None)
Convert a buffer to a string object.

Copies the data twice.

The encoding argument will be passed to the TextDecoder constructor. It should be one of the encodings
listed in the table here. The default encoding is utf8.

Parameters
encoding (Optional[str]) –

Return type
str

class pyodide.ffi.JsCallable

Bases: JsProxy

class pyodide.ffi.JsDomElement

Bases: JsProxy

class pyodide.ffi.JsDoubleProxy

Bases: JsProxy

A double proxy created with create_proxy().

3.1. Using Pyodide 105

https://docs.python.org/3.11/library/typing.html#typing.Union
https://docs.python.org/3.11/library/typing.html#typing.IO
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/typing.html#typing.IO
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/stdtypes.html#memoryview
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TextDecoder
https://encoding.spec.whatwg.org/#names-and-labels
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str

Pyodide, Release 0.26.0.dev0

destroy()

Destroy the proxy.

Return type
None

unwrap()

Unwrap a double proxy created with create_proxy() into the wrapped Python object.

Return type
Any

exception pyodide.ffi.JsException(*args, **kwargs)
Bases: JsProxy, Exception

A JavaScript Error.

These are pickleable unlike other JsProxies.

message: str

The error message

name: str

The name of the error type

classmethod new(*args)
Construct a new instance of the JavaScript object

Parameters
args (Any) –

Return type
JsException

stack: str

The JavaScript stack trace

class pyodide.ffi.JsFetchResponse

Bases: JsProxy

A JsFetchResponse object represents a Response to a fetch() request.

class pyodide.ffi.JsGenerator

Bases: JsIterable[T_co], Generic[T_co, T_contra, V_co]

A JavaScript generator

A JavaScript object is treated as a generator if its Symbol.toStringTag is "Generator". Most likely this will
be because it is a true Generator produced by the JavaScript runtime, but it may be a custom object trying hard
to pretend to be a generator. It should have next(), return() and throw() methods.

close()

Raises a GeneratorExit at the point where the generator function was paused.

If the generator function then exits gracefully, is already closed, or raises GeneratorExit (by not catching
the exception), close() returns to its caller. If the generator yields a value, a RuntimeError is raised. If
the generator raises any other exception, it is propagated to the caller. close() does nothing if the generator
has already exited due to an exception or normal exit.

Return type
None

106 Chapter 3. Table of contents

https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/exceptions.html#Exception
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/stdtypes.html#str
https://developer.mozilla.org/en-US/docs/Web/API/Response
https://developer.mozilla.org/en-US/docs/Web/API/fetch
https://docs.python.org/3.11/library/typing.html#typing.Generic
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol/toStringTag
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator/next
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator/return
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator/throw
https://docs.python.org/3.11/library/exceptions.html#GeneratorExit
https://docs.python.org/3.11/library/exceptions.html#GeneratorExit
https://docs.python.org/3.11/library/exceptions.html#RuntimeError
https://docs.python.org/3.11/library/constants.html#None

Pyodide, Release 0.26.0.dev0

send(value)
Resumes the execution and “sends” a value into the generator function.

The value argument becomes the result of the current yield expression. The send() method returns the
next value yielded by the generator, or raises StopIteration if the generator exits without yielding another
value. When send() is called to start the generator, the argument will be ignored. Unlike in Python, we
cannot detect that the generator hasn’t started yet, and no error will be thrown if the argument of a not-started
generator is not None.

Parameters
value (T_contra) –

Return type
T_co

throw(error, /)
Raises an exception at the point where the generator was paused, and returns the next value yielded by the
generator function.

If the generator exits without yielding another value, a StopIteration exception is raised. If the gen-
erator function does not catch the passed-in exception, or raises a different exception, then that exception
propagates to the caller.

In typical use, this is called with a single exception instance similar to the way the raise keyword is used.

For backwards compatibility, however, a second signature is supported, following a convention from older
versions of Python. The type argument should be an exception class, and value should be an exception
instance. If the value is not provided, the type constructor is called to get an instance. If traceback is
provided, it is set on the exception, otherwise any existing __traceback__ attribute stored in value may
be cleared.

Parameters
error (BaseException) –

Return type
T_co

class pyodide.ffi.JsIterable

Bases: JsProxy, Generic[T_co]

A JavaScript iterable object

A JavaScript object is iterable if it has a Symbol.iterator method.

class pyodide.ffi.JsIterator

Bases: JsProxy, Generic[T_co]

A JsProxy of a JavaScript iterator.

An object is a JsAsyncIterator if it has a next() method and either has a Symbol.iterator or has no
Symbol.asyncIterator.

class pyodide.ffi.JsMap

Bases: JsIterable[KT], Generic[KT, VT_co], Mapping[KT, VT_co]

A JavaScript Map

To be considered a map, a JavaScript object must have a get method, it must have a size or a length property
which is a number (idiomatically it should be called size) and it must be iterable.

3.1. Using Pyodide 107

https://docs.python.org/3.11/library/exceptions.html#StopIteration
https://docs.python.org/3.11/library/exceptions.html#StopIteration
https://docs.python.org/3.11/library/exceptions.html#BaseException
https://docs.python.org/3.11/library/typing.html#typing.Generic
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol/iterator
https://docs.python.org/3.11/library/typing.html#typing.Generic
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols#next
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol/iterator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol/asyncIterator
https://docs.python.org/3.11/library/typing.html#typing.Generic
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Mapping

Pyodide, Release 0.26.0.dev0

get(key, default, /)
If key in self, returns self[key]. Otherwise returns default.

Parameters

• key (KT) –

• default (Optional[VT_co]) –

Return type
VT_co

items()

Return a ItemsView for the map.

Return type
ItemsView[KT, VT_co]

keys()

Return a KeysView for the map.

Return type
KeysView[KT]

values()

Return a ValuesView for the map.

Return type
ValuesView[VT_co]

class pyodide.ffi.JsMutableMap

Bases: JsMap[KT, VT], Generic[KT, VT], MutableMapping[KT, VT]

A JavaScript mutable map

To be considered a mutable map, a JavaScript object must have a getmethod, a hasmethod, a size or a length
property which is a number (idiomatically it should be called size) and it must be iterable.

Instances of the JavaScript builtin Map class are JsMutableMap s. Also proxies returned by JsProxy.
as_object_map() are instances of JsMap .

clear()

Empty out the map entirely.

Return type
None

pop(key, default=None, /)
If key in self, return self[key] and remove key from self. Otherwise returns default.

Parameters

• key (KT) –

• default (Optional[VT]) –

Return type
VT

popitem()

Remove some arbitrary key, value pair from the map and returns the (key, value) tuple.

Return type
tuple[KT, VT]

108 Chapter 3. Table of contents

https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.ItemsView
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.ItemsView
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.KeysView
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.KeysView
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.ValuesView
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.ValuesView
https://docs.python.org/3.11/library/typing.html#typing.Generic
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/stdtypes.html#tuple

Pyodide, Release 0.26.0.dev0

setdefault(key, default=None)
If key in self, return self[key]. Otherwise sets self[key] = default and returns default.

Parameters

• key (KT) –

• default (Optional[VT]) –

Return type
VT

update(other=None, /, **kwargs)
Updates self from other and kwargs.

Parameters

• other (Mapping[KT, VT] | Iterable[tuple[KT, VT]]) – Either a mapping or an iterable
of pairs. This can be left out.

• kwargs (VT) – Extra key-values pairs to insert into the map. Only usable for inserting extra
strings.

Return type
None

If other is present and is a Mapping or has a keys method, does

for k in other:
self[k] = other[k]

If other is present and lacks a keys method, does

for (k, v) in other:
self[k] = v

In all cases this is followed by:

for (k, v) in kwargs.items():
self[k] = v

class pyodide.ffi.JsPromise

Bases: JsProxy, Generic[T]

A JsProxy of a Promise or some other thenable JavaScript object.

A JavaScript object is considered to be a Promise if it has a then method.

catch(onrejected, /)
The Promise.catch() API, wrapped to manage the lifetimes of the handler.

Pyodide will automatically release the references to the handler when the promise resolves.

Parameters
onrejected (Callable[[BaseException], Union[Awaitable[S], S]]) –

Return type
JsPromise[S]

3.1. Using Pyodide 109

https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3.11/library/stdtypes.html#tuple
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3.11/library/typing.html#typing.Generic
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise#thenables
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/catch
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/exceptions.html#BaseException
https://docs.python.org/3.11/library/typing.html#typing.Union
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Awaitable

Pyodide, Release 0.26.0.dev0

finally_(onfinally, /)
The Promise.finally() API, wrapped to manage the lifetimes of the handler.

Pyodide will automatically release the references to the handler when the promise resolves. Note the trailing
underscore in the name; this is needed because finally is a reserved keyword in Python.

Parameters
onfinally (Callable[[], None]) –

Return type
JsPromise[T]

then(onfulfilled, onrejected=None, /)
The Promise.then() API, wrapped to manage the lifetimes of the handlers. Pyodide will automatically
release the references to the handlers when the promise resolves.

Parameters

• onfulfilled (Optional[Callable[[T], Union[Awaitable[S], S]]]) –

• onrejected (Optional[Callable[[BaseException], Union[Awaitable[S], S]]]) –

Return type
JsPromise[S]

class pyodide.ffi.JsProxy

Bases: object

A proxy to make a JavaScript object behave like a Python object

For more information see the Type translations documentation. In particular, see the list of __dunder__ methods
that are (conditionally) implemented on JsProxy.

as_object_map(*, hereditary=False)
Returns a new JsProxy that treats the object as a map.

The methods __getitem__(), __setitem__(), __contains__(), __len__(), etc will perform
lookups via object[key] or similar.

Note that len(x.as_object_map()) evaluates in O(n) time (it iterates over the object and counts how
many ownKeys() it has). If you need to compute the length in O(1) time, use a real Map instead.

Parameters
hereditary (bool) – If True, any “plain old objects” stored as values in the object will be
wrapped in as_object_map themselves.

Return type
JsMutableMap[str, Any]

Examples

>>> from pyodide.code import run_js
>>> o = run_js("({x : {y: 2}})")

Normally you have to access the properties of o as attributes:

>>> o.x.y
2
>>> o["x"] # is not subscriptable

(continues on next page)

110 Chapter 3. Table of contents

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/finally
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/constants.html#None
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/typing.html#typing.Union
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Awaitable
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/exceptions.html#BaseException
https://docs.python.org/3.11/library/typing.html#typing.Union
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Awaitable
https://docs.python.org/3.11/library/functions.html#object
https://docs.python.org/3.11/library/operator.html#operator.__getitem__
https://docs.python.org/3.11/library/operator.html#operator.__setitem__
https://docs.python.org/3.11/library/operator.html#operator.__contains__
https://docs.python.org/3.11/reference/datamodel.html#object.__len__
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Reflect/ownKeys
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/typing.html#typing.Any

Pyodide, Release 0.26.0.dev0

(continued from previous page)

Traceback (most recent call last):
TypeError: 'pyodide.ffi.JsProxy' object is not subscriptable

as_object_map allows us to access the property with getitem:

>>> o.as_object_map()["x"].y
2

The inner object is not subscriptable because hereditary is False:

>>> o.as_object_map()["x"]["y"]
Traceback (most recent call last):
TypeError: 'pyodide.ffi.JsProxy' object is not subscriptable

When hereditary is True, the inner object is also subscriptable:

>>> o.as_object_map(hereditary=True)["x"]["y"]
2

js_id: int

An id number which can be used as a dictionary/set key if you want to key on JavaScript object identity.

If two JsProxy are made with the same backing JavaScript object, they will have the same js_id.

new(*args, **kwargs)
Construct a new instance of the JavaScript object

Parameters

• args (Any) –

• kwargs (Any) –

Return type
JsProxy

object_entries()

The JavaScript API Object.entries(object)

Return type
JsArray[JsArray[Any]]

Examples

>>> from pyodide.code import run_js
>>> js_obj = run_js("({first: 'aa', second: 22})")
>>> entries = js_obj.object_entries()
>>> [(key, val) for key, val in entries]
[('first', 'aa'), ('second', 22)]

object_keys()

The JavaScript API Object.keys(object)

Return type
JsArray[str]

3.1. Using Pyodide 111

https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/stdtypes.html#str

Pyodide, Release 0.26.0.dev0

Examples

>>> from pyodide.code import run_js
>>> js_obj = run_js("({first: 1, second: 2, third: 3})")
>>> keys = js_obj.object_keys()
>>> list(keys)
['first', 'second', 'third']

object_values()

The JavaScript API Object.values(object)

Return type
JsArray[Any]

Examples

>>> from pyodide.code import run_js
>>> js_obj = run_js("({first: 1, second: 2, third: 3})")
>>> values = js_obj.object_values()
>>> list(values)
[1, 2, 3]

to_py(*, depth=-1, default_converter=None)
Convert the JsProxy to a native Python object as best as possible.

See JavaScript to Python for more information.

Parameters

• depth (int) – Limit the depth of the conversion. If a shallow conversion is desired, set
depth to 1.

• default_converter (Optional[Callable[[JsProxy, Callable[[JsProxy], Any],
Callable[[JsProxy, Any], None]], Any]]) – If present, this will be invoked whenever
Pyodide does not have some built in conversion for the object. If default_converter
raises an error, the error will be allowed to propagate. Otherwise, the object returned will
be used as the conversion. default_converter takes three arguments. The first argument
is the value to be converted.

Return type
Any

Examples

Here are a couple examples of converter functions. In addition to the normal conversions, convert Date to
datetime:

from datetime import datetime
def default_converter(value, _ignored1, _ignored2):

if value.constructor.name == "Date":
return datetime.fromtimestamp(d.valueOf()/1000)

return value

Don’t create any JsProxies, require a complete conversion or raise an error:

112 Chapter 3. Table of contents

https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/typing.html#typing.Any
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://docs.python.org/3.11/library/datetime.html#datetime.datetime

Pyodide, Release 0.26.0.dev0

def default_converter(_value, _ignored1, _ignored2):
raise Exception("Failed to completely convert object")

The second and third arguments are only needed for converting containers. The second argument is a
conversion function which is used to convert the elements of the container with the same settings. The
third argument is a “cache” function which is needed to handle self referential containers. Consider the
following example. Suppose we have a Javascript Pair class:

class Pair {
constructor(first, second){

this.first = first;
this.second = second;

}
}

We can use the following default_converter to convert Pair to list:

def default_converter(value, convert, cache):
if value.constructor.name != "Pair":

return value
result = []
cache(value, result);
result.append(convert(value.first))
result.append(convert(value.second))
return result

Note that we have to cache the conversion of value before converting value.first and value.second.
To see why, consider a self referential pair:

let p = new Pair(0, 0);
p.first = p;

Without cache(value, result);, converting p would lead to an infinite recurse. With it, we can suc-
cessfully convert p to a list such that l[0] is l.

typeof: str

Returns the JavaScript type of the JsProxy.

Corresponds to typeof obj; in JavaScript. You may also be interested in the constructor attribute which
returns the type as an object.

class pyodide.ffi.JsTypedArray

Bases: JsBuffer, JsArray[int]

pyodide.ffi.create_once_callable(obj, /, *, _may_syncify=False)
Wrap a Python Callable in a JavaScript function that can be called once.

After being called the proxy will decrement the reference count of the Callable. The JavaScript function also has
a destroy API that can be used to release the proxy without calling it.

Parameters

• obj (Callable[..., Any]) –

• _may_syncify (bool) –

Return type
JsOnceCallable

3.1. Using Pyodide 113

https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/constants.html#Ellipsis
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/functions.html#bool

Pyodide, Release 0.26.0.dev0

pyodide.ffi.create_proxy(obj, /, *, capture_this=False, roundtrip=True)
Create a JsProxy of a PyProxy.

This allows explicit control over the lifetime of the PyProxy from Python: call the destroy() API when done.

Parameters

• obj (Any) – The object to wrap.

• capture_this (bool) – If the object is callable, should this be passed as the first argument
when calling it from JavaScript.

• roundtrip (bool) – When the proxy is converted back from JavaScript to Python, if this
is True it is converted into a double proxy. If False, it is unwrapped into a Python ob-
ject. In the case that roundtrip is True it is possible to unwrap a double proxy with the
JsDoubleProxy.unwrap()method. This is useful to allow easier control of lifetimes from
Python:

from js import o
d = {}
o.d = create_proxy(d, roundtrip=True)
o.d.destroy() # Destroys the proxy created with create_proxy

With roundtrip=False this would be an error.

Return type
JsDoubleProxy

pyodide.ffi.destroy_proxies(pyproxies, /)
Destroy all PyProxies in a JavaScript array.

pyproxies must be a JavaScript Array of PyProxies. Intended for use with the arrays created from the “pyprox-
ies” argument of toJs() and to_js(). This method is necessary because indexing the Array from Python
automatically unwraps the PyProxy into the wrapped Python object.

Parameters
pyproxies (JsArray[Any]) –

Return type
None

pyodide.ffi.register_js_module(name, jsproxy)
Registers jsproxy as a JavaScript module named name. The module can then be imported from Python using
the standard Python import system. If another module by the same name has already been imported, this won’t
have much effect unless you also delete the imported module from sys.modules. This is called by the JavaScript
API pyodide.registerJsModule().

Parameters

• name (str) – Name of js module

• jsproxy (Any) – JavaScript object backing the module

Return type
None

pyodide.ffi.run_sync(x)
Block until an awaitable is resolved.

Only works if JS Promise integration is enabled in the runtime and the current Python call stack was entered via
pyodide.runPythonAsync(), by calling an async Python function, or via callPromising().

114 Chapter 3. Table of contents

https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/sys.html#sys.modules
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/constants.html#None

Pyodide, Release 0.26.0.dev0

Experimental

This feature is not yet stable.

Parameters
x (Awaitable[T]) –

Return type
T

pyodide.ffi.to_js(obj, /, *, depth=-1, pyproxies=None, create_pyproxies=True, dict_converter=None,
default_converter=None)

Convert the object to JavaScript.

This is similar to toJs(), but for use from Python. If the object can be implicitly translated to JavaScript, it will
be returned unchanged. If the object cannot be converted into JavaScript, this method will return a JsProxy of
a PyProxy, as if you had used create_proxy().

See Python to JavaScript for more information.

Parameters

• obj (Any) – The Python object to convert

• depth (int) – The maximum depth to do the conversion. Negative numbers are treated as
infinite. Set this to 1 to do a shallow conversion.

• pyproxies (Optional[JsProxy]) – Should be a JavaScript Array. If provided, any
PyProxies generated will be stored here. You can later use destroy_proxies() if you
want to destroy the proxies from Python (or from JavaScript you can just iterate over the
Array and destroy the proxies).

• create_pyproxies (bool) – If you set this to False, to_js() will raise an error rather
than creating any pyproxies.

• dict_converter (Optional[Callable[[Iterable[JsArray[Any]]], JsProxy]]) – This
converter if provided receives a (JavaScript) iterable of (JavaScript) pairs [key, value]. It is
expected to return the desired result of the dict conversion. Some suggested values for this
argument:

– js.Map.new – similar to the default behavior

– js.Array.from – convert to an array of entries

– js.Object.fromEntries – convert to a JavaScript object

• default_converter (Optional[Callable[[Any, Callable[[Any], JsProxy],
Callable[[Any, JsProxy], None]], JsProxy]]) – If present will be invoked when-
ever Pyodide does not have some built in conversion for the object. If default_converter
raises an error, the error will be allowed to propagate. Otherwise, the object returned will
be used as the conversion. default_converter takes three arguments. The first argument
is the value to be converted.

Return type
Any

3.1. Using Pyodide 115

https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Awaitable
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/constants.html#False
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/typing.html#typing.Any

Pyodide, Release 0.26.0.dev0

Examples

>>> from js import Object, Map, Array
>>> from pyodide.ffi import to_js
>>> js_object = to_js({'age': 20, 'name': 'john'})
>>> js_object
[object Map]
>>> js_object.keys(), js_object.values()
KeysView([object Map]) ValuesView([object Map])
>>> [(k, v) for k, v in zip(js_object.keys(), js_object.values())]
[('age', 20), ('name', 'john')]

>>> js_object = to_js({'age': 20, 'name': 'john'}, dict_converter=Object.
→˓fromEntries)
>>> js_object.age == 20
True
>>> js_object.name == 'john'
True
>>> js_object
[object Object]
>>> js_object.hasOwnProperty("age")
True
>>> js_object.hasOwnProperty("height")
False

>>> js_object = to_js({'age': 20, 'name': 'john'}, dict_converter=Array.from_)
>>> [item for item in js_object]
[age,20, name,john]
>>> js_object.toString()
age,20,name,john

>>> class Bird: pass
>>> converter = lambda value, convert, cache: Object.new(size=1, color='red') if␣
→˓isinstance(value, Bird) else None
>>> js_nest = to_js([Bird(), Bird()], default_converter=converter)
>>> [bird for bird in js_nest]
[[object Object], [object Object]]
>>> [(bird.size, bird.color) for bird in js_nest]
[(1, 'red'), (1, 'red')]

Here are some examples demonstrating the usage of the default_converter argument.

In addition to the normal conversions, convert JavaScript Date objects to datetime objects:

from datetime import datetime
from js import Date
def default_converter(value, _ignored1, _ignored2):

if isinstance(value, datetime):
return Date.new(value.timestamp() * 1000)

return value

Don’t create any PyProxies, require a complete conversion or raise an error:

116 Chapter 3. Table of contents

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://docs.python.org/3.11/library/datetime.html#datetime.datetime

Pyodide, Release 0.26.0.dev0

def default_converter(_value, _ignored1, _ignored2):
raise Exception("Failed to completely convert object")

The second and third arguments are only needed for converting containers. The second argument is a conversion
function which is used to convert the elements of the container with the same settings. The third argument is a
“cache” function which is needed to handle self referential containers. Consider the following example. Suppose
we have a Python Pair class:

class Pair:
def __init__(self, first, second):

self.first = first
self.second = second

We can use the following default_converter to convert Pair to Array:

from js import Array

def default_converter(value, convert, cache):
if not isinstance(value, Pair):

return value
result = Array.new()
cache(value, result)
result.push(convert(value.first))
result.push(convert(value.second))
return result

Note that we have to cache the conversion of value before converting value.first and value.second. To
see why, consider a self referential pair:

p = Pair(0, 0); p.first = p;

Without cache(value, result);, converting p would lead to an infinite recurse. With it, we can successfully
convert p to an Array such that l[0] === l.

pyodide.ffi.unregister_js_module(name)
Unregisters a JavaScript module with given name that has been previously registered with pyodide.
registerJsModule() or pyodide.ffi.register_js_module(). If a JavaScript module with that name
does not already exist, will raise an error. If the module has already been imported, this won’t have much effect
unless you also delete the imported module from sys.modules. This is called by the JavaScript API pyodide.
unregisterJsModule().

Parameters
name (str) – Name of the module to unregister

Return type
None

Functions:

3.1. Using Pyodide 117

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://docs.python.org/3.11/library/sys.html#sys.modules
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None

Pyodide, Release 0.26.0.dev0

add_event_listener(elt, event, listener) Wrapper for JavaScript's addEventListener() which
automatically manages the lifetime of a JsProxy corre-
sponding to the listener parameter.

clear_interval(interval_retval) Wrapper for JavaScript's clearInterval() which au-
tomatically manages the lifetime of a JsProxy corre-
sponding to the callback parameter.

clear_timeout(timeout_retval) Wrapper for JavaScript's clearTimeout() which auto-
matically manages the lifetime of a JsProxy correspond-
ing to the callback parameter.

remove_event_listener(elt, event, listener) Wrapper for JavaScript's removeEventListener()
which automatically manages the lifetime of a JsProxy
corresponding to the listener parameter.

set_interval(callback, interval) Wrapper for JavaScript's setInterval() which auto-
matically manages the lifetime of a JsProxy correspond-
ing to the callback parameter.

set_timeout(callback, timeout) Wrapper for JavaScript's setTimeout() which auto-
matically manages the lifetime of a JsProxy correspond-
ing to the callback param.

pyodide.ffi.wrappers.add_event_listener(elt, event, listener)
Wrapper for JavaScript’s addEventListener() which automatically manages the lifetime of a JsProxy corre-
sponding to the listener parameter.

Parameters

• elt (JsDomElement) –

• event (str) –

• listener (Callable[[Any], None]) –

Return type
None

pyodide.ffi.wrappers.clear_interval(interval_retval)
Wrapper for JavaScript’s clearInterval()which automatically manages the lifetime of a JsProxy correspond-
ing to the callback parameter.

Parameters
interval_retval (int | JsProxy) –

Return type
None

pyodide.ffi.wrappers.clear_timeout(timeout_retval)
Wrapper for JavaScript’s clearTimeout() which automatically manages the lifetime of a JsProxy correspond-
ing to the callback parameter.

Parameters
timeout_retval (int | JsProxy) –

Return type
None

pyodide.ffi.wrappers.remove_event_listener(elt, event, listener)
Wrapper for JavaScript’s removeEventListener() which automatically manages the lifetime of a JsProxy
corresponding to the listener parameter.

118 Chapter 3. Table of contents

https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/clearInterval
https://developer.mozilla.org/en-US/docs/Web/API/clearTimeout
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/removeEventListener
https://developer.mozilla.org/en-US/docs/Web/API/setInterval
https://developer.mozilla.org/en-US/docs/Web/API/setTimeout
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/constants.html#None
https://developer.mozilla.org/en-US/docs/Web/API/clearInterval
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/constants.html#None
https://developer.mozilla.org/en-US/docs/Web/API/clearTimeout
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/constants.html#None
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/removeEventListener

Pyodide, Release 0.26.0.dev0

Parameters

• elt (JsDomElement) –

• event (str) –

• listener (Callable[[Any], None]) –

Return type
None

pyodide.ffi.wrappers.set_interval(callback, interval)
Wrapper for JavaScript’s setInterval() which automatically manages the lifetime of a JsProxy corresponding
to the callback parameter.

Parameters

• callback (Callable[[], None]) –

• interval (int) –

Return type
int | JsProxy

pyodide.ffi.wrappers.set_timeout(callback, timeout)
Wrapper for JavaScript’s setTimeout() which automatically manages the lifetime of a JsProxy corresponding
to the callback param.

Parameters

• callback (Callable[[], None]) –

• timeout (int) –

Return type
int | JsProxy

pyodide.http

Classes:

FetchResponse(url, js_response) A wrapper for a Javascript fetch Response.

Functions:

open_url(url) Fetches a given URL synchronously.
pyfetch (url, **kwargs) Fetch the url and return the response.

class pyodide.http.FetchResponse(url, js_response)
A wrapper for a Javascript fetch Response.

Parameters

• url (str) – URL to fetch

• js_response (JsFetchResponse) – A JsProxy of the fetch response

3.1. Using Pyodide 119

https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/constants.html#None
https://developer.mozilla.org/en-US/docs/Web/API/setInterval
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://developer.mozilla.org/en-US/docs/Web/API/setTimeout
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#int
https://docs.python.org/3.11/library/functions.html#int
https://developer.mozilla.org/en-US/docs/Web/API/Response
https://developer.mozilla.org/en-US/docs/Web/API/Response
https://docs.python.org/3.11/library/stdtypes.html#str

Pyodide, Release 0.26.0.dev0

body_used: bool

Has the response been used yet?

If so, attempting to retrieve the body again will raise an OSError. Use clone() first to avoid this. See
Response.bodyUsed.

async buffer()

Return the response body as a Javascript ArrayBuffer.

See Response.arrayBuffer().

Return type
JsBuffer

async bytes()

Return the response body as a bytes object

Return type
bytes

clone()

Return an identical copy of the FetchResponse.

This method exists to allow multiple uses of FetchResponse objects. See Response.clone().

Return type
FetchResponse

headers: dict[str, str]

Response headers as dictionary.

async json(**kwargs)
Treat the response body as a JSON string and use json.loads() to parse it into a Python object.

Any keyword arguments are passed to json.loads().

Parameters
kwargs (Any) –

Return type
Any

async memoryview()

Return the response body as a memoryview object

Return type
memoryview

ok: bool

Was the request successful?

See Response.ok.

raise_for_status()

Raise an OSError if the status of the response is an error (4xx or 5xx)

Return type
None

redirected: bool

Was the request redirected?

See Response.redirected.

120 Chapter 3. Table of contents

https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/exceptions.html#OSError
https://developer.mozilla.org/en-US/docs/Web/API/Response/bodyUsed
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/API/Response/arrayBuffer
https://developer.mozilla.org/en-US/docs/Web/API/Response/clone
https://docs.python.org/3.11/library/stdtypes.html#dict
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/json.html#json.loads
https://docs.python.org/3.11/library/json.html#json.loads
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/functions.html#bool
https://developer.mozilla.org/en-US/docs/Web/API/Response/ok
https://docs.python.org/3.11/library/exceptions.html#OSError
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#bool
https://developer.mozilla.org/en-US/docs/Web/API/Response/redirected

Pyodide, Release 0.26.0.dev0

status: int

Response status code

See Response.status.

status_text: str

Response status text

See Response.statusText.

async string()

Return the response body as a string

Does the same thing as FetchResponse.text().

Return type
str

Deprecated since version 0.24.0: Use FetchResponse.text() instead.

async text()

Return the response body as a string

Return type
str

type: str

The type of the response.

See Response.type.

async unpack_archive(*, extract_dir=None, format=None)
Treat the data as an archive and unpack it into target directory.

Assumes that the file is an archive in a format that shutil has an unpacker for. The arguments
extract_dir and format are passed directly on to shutil.unpack_archive().

Parameters

• extract_dir (Optional[str]) – Directory to extract the archive into. If not provided,
the current working directory is used.

• format (Optional[str]) – The archive format: one of "zip", "tar", "gztar",
"bztar". Or any other format registered with shutil.register_unpack_format().
If not provided, unpack_archive() will use the archive file name extension and see if an
unpacker was registered for that extension. In case none is found, a ValueError is raised.

Return type
None

url: str

The url of the response.

The value may be different than the url passed to fetch. See Response.url.

pyodide.http.open_url(url)
Fetches a given URL synchronously.

The download of binary files is not supported. To download binary files use pyodide.http.pyfetch() which
is asynchronous.

It will not work in Node unless you include an polyfill for XMLHttpRequest.

3.1. Using Pyodide 121

https://docs.python.org/3.11/library/functions.html#int
https://developer.mozilla.org/en-US/docs/Web/API/Response/status
https://docs.python.org/3.11/library/stdtypes.html#str
https://developer.mozilla.org/en-US/docs/Web/API/Response/statusText
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://developer.mozilla.org/en-US/docs/Web/API/Response/type
https://docs.python.org/3.11/library/shutil.html#module-shutil
https://docs.python.org/3.11/library/shutil.html#shutil.unpack_archive
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/shutil.html#shutil.register_unpack_format
https://docs.python.org/3.11/library/exceptions.html#ValueError
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/stdtypes.html#str
https://developer.mozilla.org/en-US/docs/Web/API/Response/url
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest

Pyodide, Release 0.26.0.dev0

Parameters
url (str) – URL to fetch

Return type
StringIO

Returns
The contents of the URL.

Examples

>>> None
>>> import pytest; pytest.skip("TODO: Figure out how to skip this only in node")
>>> url = "https://cdn.jsdelivr.net/pyodide/v0.24.1/full/pyodide-lock.json"
>>> url_contents = open_url(url)
>>> import json
>>> result = json.load(url_contents)
>>> sorted(list(result["info"].items()))
[('arch', 'wasm32'), ('platform', 'emscripten_3_1_45'), ('python', '3.11.3'), (
→˓'version', '0.24.1')]

async pyodide.http.pyfetch(url, **kwargs)
Fetch the url and return the response.

This functions provides a similar API to fetch() however it is designed to be convenient to use from Python.
The FetchResponse has methods with the output types already converted to Python objects.

Parameters

• url (str) – URL to fetch.

• **kwargs (Any) – keyword arguments are passed along as optional parameters to the fetch
API.

Return type
FetchResponse

Examples

>>> import pytest; pytest.skip("Can't use top level await in doctests")
>>> res = await pyfetch("https://cdn.jsdelivr.net/pyodide/v0.23.4/full/repodata.json
→˓")
>>> res.ok
True
>>> res.status
200
>>> data = await res.json()
>>> data
{'info': {'arch': 'wasm32', 'platform': 'emscripten_3_1_32',
'version': '0.23.4', 'python': '3.11.2'}, ... # long output truncated

122 Chapter 3. Table of contents

https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/io.html#io.StringIO
https://developer.mozilla.org/en-US/docs/Web/API/fetch
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/typing.html#typing.Any
https://developer.mozilla.org/en-US/docs/Web/API/fetch#options
https://developer.mozilla.org/en-US/docs/Web/API/fetch#options

Pyodide, Release 0.26.0.dev0

pyodide.webloop

Classes:

PyodideFuture(*[, loop]) A Future with extra then(), catch(), and
finally_() methods based on the Javascript promise
API.

PyodideTask(coro, *[, loop, name, context, ...]) Inherits from both Task and PyodideFuture
WebLoop() A custom event loop for use in Pyodide.
WebLoopPolicy() A simple event loop policy for managing WebLoop-

based event loops.

class pyodide.webloop.PyodideFuture(*, loop=None)
A Future with extra then(), catch(), and finally_() methods based on the Javascript promise API.
create_future() returns these so in practice all futures encountered in Pyodide should be an instance of
PyodideFuture.

catch(onrejected)
Equivalent to then(None, onrejected)

Parameters
onrejected (Callable[[BaseException], object]) –

Return type
PyodideFuture[Any]

finally_(onfinally)
When the future is either resolved or rejected, call onfinally with no arguments.

Parameters
onfinally (Callable[[], None]) –

Return type
PyodideFuture[T]

then(onfulfilled, onrejected=None)
When the Future is done, either execute onfulfilled with the result or execute onrejected with the exception.

Returns a new Future which will be marked done when either the onfulfilled or onrejected callback is
completed. If the return value of the executed callback is awaitable it will be awaited repeatedly until a
nonawaitable value is received. The returned Future will be resolved with that value. If an error is raised,
the returned Future will be rejected with the error.

Parameters

• onfulfilled (Optional[Callable[[T], Union[S, Awaitable[S]]]]) – A function called
if the Future is fulfilled. This function receives one argument, the fulfillment value.

• onrejected (Optional[Callable[[BaseException], Union[S, Awaitable[S]]]]) – A
function called if the Future is rejected. This function receives one argument, the rejection
value.

Return type
PyodideFuture[S]

Returns
A new future to be resolved when the original future is done and the appropriate callback is
also done.

3.1. Using Pyodide 123

https://docs.python.org/3.11/library/asyncio-future.html#asyncio.Future
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/catch
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/finally
https://docs.python.org/3.11/library/asyncio-task.html#asyncio.Task
https://docs.python.org/3.11/library/asyncio-future.html#asyncio.Future
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/catch
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/finally
https://docs.python.org/3.11/library/asyncio-eventloop.html#asyncio.loop.create_future
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/exceptions.html#BaseException
https://docs.python.org/3.11/library/functions.html#object
https://docs.python.org/3.11/library/typing.html#typing.Any
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/typing.html#typing.Union
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Awaitable
https://docs.python.org/3.11/library/typing.html#typing.Optional
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3.11/library/exceptions.html#BaseException
https://docs.python.org/3.11/library/typing.html#typing.Union
https://docs.python.org/3.11/library/collections.abc.html#collections.abc.Awaitable

Pyodide, Release 0.26.0.dev0

class pyodide.webloop.PyodideTask(coro, *, loop=None, name=None, context=None, eager_start=False)
Inherits from both Task and PyodideFuture

Instantiation is discouraged unless you are writing your own event loop.

class pyodide.webloop.WebLoop

A custom event loop for use in Pyodide.

Schedules tasks on the browser event loop. Does no lifecycle management and runs forever.

run_forever() and run_until_complete() cannot block like a normal event loop would because we only
have one thread so blocking would stall the browser event loop and prevent anything from ever happening.

We defer all work to the browser event loop using the setTimeout() function. To ensure that this event loop
doesn’t stall out UI and other browser handling, we want to make sure that each task is scheduled on the browser
event loop as a task not as a microtask. setTimeout(callback, 0) enqueues the callback as a task so it works
well for our purposes.

See the Python Event Loop documentation.

class pyodide.webloop.WebLoopPolicy

A simple event loop policy for managing WebLoop-based event loops.

pyodide CLI

This page documents the Pyodide Command Line Interface (CLI) interface. In addition to the commands defined by
pyodide-build, documented below, other subcommands are defined in external packages (which can be installed
with pip):

• pyodide pack, defined in pyodide-pack is a package bundler for Pyodide

pyodide

A command line interface for Pyodide.

Other CLI subcommands are registered via the plugin system by installing Pyodide compatible packages (e.g. pyodide-
build).

pyodide [OPTIONS] COMMAND [ARGS]...

Options

--version

auditwheel

Auditwheel-like tool for emscripten wheels and shared libraries.

Registered by: auditwheel_emscripten

pyodide auditwheel [OPTIONS] COMMAND [ARGS]...

124 Chapter 3. Table of contents

https://docs.python.org/3.11/library/asyncio-task.html#asyncio.Task
https://docs.python.org/3.11/library/asyncio-eventloop.html#asyncio.loop.run_forever
https://docs.python.org/3.11/library/asyncio-eventloop.html#asyncio.loop.run_until_complete
https://developer.mozilla.org/en-US/docs/Web/API/setTimeout
https://docs.python.org/3.11/library/asyncio-eventloop.html
https://github.com/pyodide/pyodide-pack

Pyodide, Release 0.26.0.dev0

copy

[Deprecated] Copy shared libraries to the wheel directory. Works same as repair. Use repair instead.

pyodide auditwheel copy [OPTIONS] WHEEL_FILE

Options

--libdir <libdir>

Path to the directory containing the shared libraries.

Default
lib

--output-dir <output_dir>

Directory to output repaired wheel or shared library. (default: overwrite the input file)

Arguments

WHEEL_FILE

Required argument

exports

Show exports of a wheel or a shared library file.

pyodide auditwheel exports [OPTIONS] WHEEL_OR_SO_FILE

Options

--show-type, --no-show-type

Show function type.

Default
False

Arguments

WHEEL_OR_SO_FILE

Required argument

3.1. Using Pyodide 125

Pyodide, Release 0.26.0.dev0

imports

Show imports of a wheel or a shared library file.

pyodide auditwheel imports [OPTIONS] WHEEL_OR_SO_FILE

Options

--show-type, --no-show-type

Show function type.

Default
False

Arguments

WHEEL_OR_SO_FILE

Required argument

repair

Repair a wheel file: copy shared libraries to the wheel directory.

pyodide auditwheel repair [OPTIONS] WHEEL_FILE

Options

--libdir <libdir>

Path to the directory containing the shared libraries.

Default
lib

--output-dir <output_dir>

Directory to output repaired wheel or shared library. (default: overwrite the input file)

Arguments

WHEEL_FILE

Required argument

126 Chapter 3. Table of contents

Pyodide, Release 0.26.0.dev0

show

Show shared library dependencies of a wheel or a shared library file.

pyodide auditwheel show [OPTIONS] WHEEL_OR_SO_FILE

Arguments

WHEEL_OR_SO_FILE

Required argument

build

Use pypa/build to build a Python package from source, pypi or url.

Registered by: pyodide-build

pyodide build [OPTIONS] [SOURCE_LOCATION]

Options

-o, --outdir <output_directory>

which directory should the output be placed into?

Default

-r, --requirements <requirements_txt>

Build a list of package requirements from a requirements.txt file

Default

--exports <exports>

Which symbols should be exported when linking .so files?

Default
requested

--build-dependencies, --no-build-dependencies

Fetch dependencies from pypi and build them too.

Default
False

--output-lockfile <output_lockfile>

Output list of resolved dependencies to a file in requirements.txt format

Default

--skip-dependency <skip_dependency>

Skip building or resolving a single dependency, or a pyodide-lock.json file. Use multiple times or provide a
comma separated list to skip multiple dependencies.

Default

3.1. Using Pyodide 127

Pyodide, Release 0.26.0.dev0

--skip-built-in-packages, --no-skip-built-in-packages

Don’t build dependencies that are built into the pyodide distribution.

Default
True

--compression-level <compression_level>

Compression level to use for the created zip file

Default
6

-C, --config-setting <KEY[=VALUE>

Settings to pass to the backend. Works same as the –config-setting option of pypa/build.

Arguments

SOURCE_LOCATION

Optional argument

Environment variables

PYODIDE_BUILD_EXPORTS

Provide a default for --exports

build-recipes

None

Registered by: pyodide-build

pyodide build-recipes [OPTIONS] PACKAGES...

Options

--recipe-dir <recipe_dir>

The directory containing the recipe of packages. If not specified, the default is ./packages

--build-dir <build_dir>

The directory where build directories for packages are created. Default: recipe_dir.

--install, --no-install

If true, install the built packages into the install_dir. If false, build packages without installing.

Default
False

--install-dir <install_dir>

Path to install built packages and pyodide-lock.json. If not specified, the default is ./dist.

128 Chapter 3. Table of contents

Pyodide, Release 0.26.0.dev0

--metadata-files, --no-metadata-files

If true, extract the METADATA file from the built wheels to a matching *.whl.metadata file. If false, no
*.whl.metadata file is produced.

Default
False

--no-deps, --no-no-deps

Removed, use pyodide build-recipes-no-deps instead.

Default
False

--cflags <cflags>

Extra compiling flags. Default: SIDE_MODULE_CFLAGS

--cxxflags <cxxflags>

Extra compiling flags. Default: SIDE_MODULE_CXXFLAGS

--ldflags <ldflags>

Extra linking flags. Default: SIDE_MODULE_LDFLAGS

--target-install-dir <target_install_dir>

The path to the target Python installation. Default: TARGETINSTALLDIR

Default

--host-install-dir <host_install_dir>

Directory for installing built host packages. Default: HOSTINSTALLDIR

Default

--log-dir <log_dir>

Directory to place log files

--force-rebuild, --no-force-rebuild

Force rebuild of all packages regardless of whether they appear to have been updated

Default
False

--n-jobs <n_jobs>

Number of packages to build in parallel (default: # of cores in the system)

--compression-level <compression_level>

Level of zip compression to apply when installing. 0 means no compression.

Default
6

3.1. Using Pyodide 129

Pyodide, Release 0.26.0.dev0

Arguments

PACKAGES

Required argument(s)

Environment variables

PYODIDE_RECIPE_BUILD_DIR

Provide a default for --build-dir

PYODIDE_ZIP_COMPRESSION_LEVEL

Provide a default for --compression-level

build-recipes-no-deps

Build packages using yaml recipes but don’t try to resolve dependencies

Registered by: pyodide-build

pyodide build-recipes-no-deps [OPTIONS] PACKAGES...

Options

--recipe-dir <recipe_dir>

The directory containing the recipe of packages. If not specified, the default is ./packages

--build-dir <build_dir>

The directory where build directories for packages are created. Default: recipe_dir.

--cflags <cflags>

Extra compiling flags. Default: SIDE_MODULE_CFLAGS

Default

--cxxflags <cxxflags>

Extra compiling flags. Default: SIDE_MODULE_CXXFLAGS

Default

--ldflags <ldflags>

Extra linking flags. Default: SIDE_MODULE_LDFLAGS

Default

--target-install-dir <target_install_dir>

The path to the target Python installation. Default: TARGETINSTALLDIR

Default

--host-install-dir <host_install_dir>

Directory for installing built host packages. Default: HOSTINSTALLDIR

Default

130 Chapter 3. Table of contents

Pyodide, Release 0.26.0.dev0

--force-rebuild, --no-force-rebuild

Force rebuild of all packages regardless of whether they appear to have been updated

Default
False

--continue

Continue a build from the middle. For debugging. Implies ‘–force-rebuild’

Default
False

Arguments

PACKAGES

Required argument(s)

Environment variables

PYODIDE_RECIPE_BUILD_DIR

Provide a default for --build-dir

config

Manage config variables used in pyodide

Registered by: pyodide-build

pyodide config [OPTIONS] COMMAND [ARGS]...

get

Get a value of a single config variable used in pyodide

pyodide config get [OPTIONS] CONFIG_VAR

Arguments

CONFIG_VAR

Required argument

3.1. Using Pyodide 131

Pyodide, Release 0.26.0.dev0

list

List config variables used in pyodide

pyodide config list [OPTIONS]

lockfile

manipulate pyodide-lock.json lockfiles.

Registered by: pyodide-lock

pyodide lockfile [OPTIONS] COMMAND [ARGS]...

add-wheels

Add a set of package wheels to an existing pyodide-lock.json and write it out to pyodide-lock-new.json

Each package in the wheel will be added to the output lockfile, including resolution of dependencies in the lock file.
By default this will fail if a dependency isn’t available in either the existing lock file, or in the set of new wheels.

pyodide lockfile add-wheels [OPTIONS] WHEELS...

Options

--ignore-missing-dependencies, --no-ignore-missing-dependencies

If this is true, dependencies which are not in the original lockfile or the added wheels will be added to the lockfile.
Warning: This will allow a broken lockfile to be created.

Default
False

--input <input>

Source lockfile

Default
pyodide-lock.json

--output <output>

Updated lockfile

Default
pyodide-lock-new.json

--base-path <base_path>

Base path for wheels - wheel file names will be created relative to this path.

--wheel-url <wheel_url>

Base url which will be appended to the wheel location.Use this if you are hosting these wheels on a different
server to core pyodide packages

Default

132 Chapter 3. Table of contents

Pyodide, Release 0.26.0.dev0

Arguments

WHEELS

Required argument(s)

py-compile

Compile .py files to .pyc in a wheel, a zip file, or a folder with wheels or zip files.

If the provided folder contains the pyodide-lock.json file, it will be rewritten with the updated wheel / zip
file paths and sha256 checksums.

Registered by: pyodide-build

pyodide py-compile [OPTIONS] PATH

Options

--silent, --no-silent

Silent mode, do not print anything.

Default
False

--keep, --no-keep

Keep the original wheel / zip file.

Default
False

--compression-level <compression_level>

Compression level to use for the created zip file

Default
6

Arguments

PATH

Required argument

skeleton

Add a new package build recipe or update an existing recipe

Registered by: pyodide-build

pyodide skeleton [OPTIONS] COMMAND [ARGS]...

3.1. Using Pyodide 133

Pyodide, Release 0.26.0.dev0

pypi

Create a new package from PyPI.

pyodide skeleton pypi [OPTIONS] NAME

Options

-u, --update

Update an existing recipe instead of creating a new one

Default
False

--update-patched

Force update the package even if it contains patches.

Default
False

--version <version>

The version of the package, if not specified, latest version will be used.

--source-format <source_format>

Which source format is preferred. Options are wheel or sdist. If not specified, then either a wheel or an sdist will
be used.

--recipe-dir <recipe_dir>

The directory containing the recipe of packages.If not specified, the default is <cwd>/packages.

Arguments

NAME

Required argument

venv

Create a Pyodide virtual environment

Registered by: pyodide-build

pyodide venv [OPTIONS] DEST

134 Chapter 3. Table of contents

Pyodide, Release 0.26.0.dev0

Arguments

DEST

Required argument

3.1.10 Frequently Asked Questions

How can I load external files in Pyodide?

See .

Why can’t I load files from the local file system?

For security reasons JavaScript in the browser is not allowed to load local data files (for example, file:///path/to/
local/file.data). You will run into Network Errors, due to the Same Origin Policy. There is a File System API
supported in Chrome but not in Firefox or Safari. See (Experimental) Using the native file system in the browser for
experimental local file system support.

For development purposes, you can serve your files with a web server.

How can I execute code in a custom namespace?

The second argument to pyodide.runPython() is an options object which may include a globals element which is
a namespace for code to read from and write to. The provided namespace must be a Python dictionary.

let my_namespace = pyodide.globals.get("dict")();
pyodide.runPython(`x = 1 + 1`, { globals: my_namespace });
pyodide.runPython(`y = x ** x`, { globals: my_namespace });
my_namespace.get("y"); // ==> 4

You can also use this approach to inject variables from JavaScript into the Python namespace, for example:

let my_namespace = pyodide.toPy({ x: 2, y: [1, 2, 3] });
pyodide.runPython(
`
assert x == y[1]
z = x ** x
`,
{ globals: my_namespace }

);
my_namespace.get("z"); // ==> 4

3.1. Using Pyodide 135

https://en.wikipedia.org/wiki/Same-origin_policy
https://wicg.github.io/file-system-access/
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/set_up_a_local_testing_server

Pyodide, Release 0.26.0.dev0

How to detect that code is run with Pyodide?

At run time, you can check if Python is built with Emscripten (which is the case for Pyodide) with,

import sys

if sys.platform == 'emscripten':
running in Pyodide or other Emscripten based build

To detect that a code is running with Pyodide specifically, you can check for the loaded pyodide module,

import sys

if "pyodide" in sys.modules:
running in Pyodide

This however will not work at build time (i.e. in a setup.py) due to the way the Pyodide build system works. It first
compiles packages with the host compiler (e.g. gcc) and then re-runs the compilation commands with emsdk. So the
setup.py is never run inside the Pyodide environment.

To detect Pyodide, at build time use,

import os

if "PYODIDE" in os.environ:
building for Pyodide

How do I create custom Python packages from JavaScript?

Put a collection of functions into a JavaScript object and use pyodide.registerJsModule(): JavaScript:

let my_module = {
f: function (x) {
return x * x + 1;

},
g: function (x) {
console.log(`Calling g on argument ${x}`);
return x;

},
submodule: {
h: function (x) {
return x * x - 1;

},
c: 2,

},
};
pyodide.registerJsModule("my_js_module", my_module);

You can import your package like a normal Python package:

import my_js_module
from my_js_module.submodule import h, c
assert my_js_module.f(7) == 50

(continues on next page)

136 Chapter 3. Table of contents

Pyodide, Release 0.26.0.dev0

(continued from previous page)

assert h(9) == 80
assert c == 2

How can I send a Python object from my server to Pyodide?

The best way to do this is with pickle. If the version of Python used in the server exactly matches the version of Python
used in the client, then objects that can be successfully pickled can be sent to the client and unpickled in Pyodide. If
the versions of Python are different then for instance sending AST is unlikely to work since there are breaking changes
to Python AST in most Python minor versions.

Similarly when pickling Python objects defined in a Python package, the package version needs to match exactly be-
tween the server and pyodide.

Generally, pickles are portable between architectures (here amd64 and wasm32). The rare cases when they are not
portable, for instance currently tree based models in scikit-learn, can be considered as a bug in the upstream library.

Security Issues with pickle

Unpickling data is similar to eval. On any public-facing server it is a really bad idea to unpickle any data sent from
the client. For sending data from client to server, try some other serialization format like JSON.

How can I use a Python function as an event handler?

Note that the most straight forward way of doing this will not work:

from js import document
def f(*args):

document.querySelector("h1").innerHTML += "(>.<)"

document.body.addEventListener('click', f)

Now every time you click, an error will be raised (see Calling JavaScript functions from Python).

To do this correctly use create_proxy() as follows:

from js import document
from pyodide.ffi import create_proxy
def f(*args):

document.querySelector("h1").innerHTML += "(>.<)"

proxy_f = create_proxy(f)
document.body.addEventListener('click', proxy_f)
Store proxy_f in Python then later:
document.body.removeEventListener('click', proxy_f)
proxy_f.destroy()

3.1. Using Pyodide 137

Pyodide, Release 0.26.0.dev0

How can I use fetch with optional arguments from Python?

The most obvious translation of the JavaScript code won’t work:

import json
resp = await js.fetch('/someurl', {
"method": "POST",
"body": json.dumps({ "some" : "json" }),
"credentials": "same-origin",
"headers": { "Content-Type": "application/json" }

})

The fetch() API ignores the options that we attempted to provide. You can do this correctly in one of two ways:

import json
from pyodide.ffi import to_js
from js import Object
resp = await js.fetch('example.com/some_api',

method= "POST",
body= json.dumps({ "some" : "json" }),
credentials= "same-origin",
headers= Object.fromEntries(to_js({ "Content-Type": "application/json" })),

)

or:

import json
from pyodide.ffi import to_js
from js import Object
resp = await js.fetch('example.com/some_api', to_js({

"method": "POST",
"body": json.dumps({ "some" : "json" }),
"credentials": "same-origin",
"headers": { "Content-Type": "application/json" }

}, dict_converter=Object.fromEntries)

How can I control the behavior of stdin / stdout / stderr?

If you wish to override stdin, stdout or stderr for the entire Pyodide runtime, you can pass options to
loadPyodide(): If you say

loadPyodide({
stdin: stdin_func,
stdout: stdout_func,
stderr: stderr_func,

});

then every time a line is written to stdout (resp. stderr), stdout_func (resp stderr_func) will be called on the
line. Every time stdin is read, stdin_func will be called with zero arguments. It is expected to return a string which
is interpreted as a line of text.

You can also use the functions pyodide.setStdin(), pyodide.setStdout(), and pyodide.setStderr().

Temporary redirection works much the same as it does in native Python: you can overwrite sys.stdin, sys.
stdout, and sys.stderr respectively. If you want to do it temporarily, it’s recommended to use contextlib.

138 Chapter 3. Table of contents

https://developer.mozilla.org/en-US/docs/Web/API/fetch
https://docs.python.org/3.11/library/sys.html#sys.stdin
https://docs.python.org/3.11/library/sys.html#sys.stdout
https://docs.python.org/3.11/library/sys.html#sys.stdout
https://docs.python.org/3.11/library/sys.html#sys.stderr
https://docs.python.org/3.11/library/contextlib.html#contextlib.redirect_stdout
https://docs.python.org/3.11/library/contextlib.html#contextlib.redirect_stdout

Pyodide, Release 0.26.0.dev0

redirect_stdout() and contextlib.redirect_stderr() There is no contextlib.redirect_stdin() but it
is easy to make your own as follows:

from contextlib import _RedirectStream
class redirect_stdin(_RedirectStream):

_stream = "stdin"

For example, if you do:

from io import StringIO
with redirect_stdin(StringIO("\n".join(["eval", "asyncio.ensure_future", "functools.
→˓reduce", "quit"]))):
help()

it will print:

Welcome to Python 3.10's help utility!
<...OMITTED LINES>
Help on built-in function eval in module builtins:
eval(source, globals=None, locals=None, /)

Evaluate the given source in the context of globals and locals.
<...OMITTED LINES>
Help on function ensure_future in asyncio:
asyncio.ensure_future = ensure_future(coro_or_future, *, loop=None)

Wrap a coroutine or an awaitable in a future.
<...OMITTED LINES>
Help on built-in function reduce in functools:
functools.reduce = reduce(...)

reduce(function, sequence[, initial]) -> value
Apply a function of two arguments cumulatively to the items of a sequence,

<...OMITTED LINES>
You are now leaving help and returning to the Python interpreter.

Why can’t Micropip find a “pure Python wheel” for a package?

When installing a Python package from PyPI, micropip will produce an error if it cannot find a pure Python
wheel. To determine if a package has a pure Python wheel manually, you can open its PyPi page (for instance
https://pypi.org/project/snowballstemmer/) and go to the “Download files” tab. If this tab doesn’t contain a file
*py3-none-any.whl then the pure Python wheel is missing.

This can happen for two reasons,

1. either the package is pure Python (you can check language composition for a package on Github), and its main-
tainers didn’t upload a wheel. In this case, you can report this issue to the package issue tracker. As a temporary
solution, you can also build the wheel yourself, upload it to some temporary location and install it with micropip
from the corresponding URL.

2. or the package has binary extensions (e.g. C, Fortran or Rust), in which case it needs to be packaged in Pyodide.
Please open an issue after checking that an issue for this package doesn’t exist already. Then follow Creating a
Pyodide package.

3.1. Using Pyodide 139

https://docs.python.org/3.11/library/contextlib.html#contextlib.redirect_stdout
https://docs.python.org/3.11/library/contextlib.html#contextlib.redirect_stdout
https://docs.python.org/3.11/library/contextlib.html#contextlib.redirect_stderr
https://packaging.python.org/en/latest/tutorials/packaging-projects/#generating-distribution-archives
https://github.com/pyodide/pyodide/issues

Pyodide, Release 0.26.0.dev0

How can I change the behavior of runPython() and runPythonAsync()?

You can directly call Python functions from JavaScript. For most purposes it makes sense to make your own Python
function as an entrypoint and call that instead of redefining runPython. The definitions of runPython() and
runPythonAsync() are very simple:

function runPython(code) {
pyodide.pyodide_py.code.eval_code(code, pyodide.globals);

}

async function runPythonAsync(code) {
return await pyodide.pyodide_py.code.eval_code_async(code, pyodide.globals);

}

To make your own version of runPython() you could do:

const my_eval_code = pyodide.runPython(`
from pyodide.code import eval_code
def my_eval_code(code, globals=None, locals=None):
extra_info = None
result = eval_code(code, globals, locals)
return globals["extra_info"], result

my_eval_code
`)

function myRunPython(code){
return my_eval_code(code, pyodide.globals);

}

Then myRunPython("2+7") returns [None, 9] and myRunPython("extra_info='hello' ; 2 + 2") returns
['hello', 4]. If you want to change which packages pyodide.loadPackagesFromImports() loads, you can
monkey patch pyodide.code.find_imports() which takes code as an argument and returns a list of packages
imported.

Why can’t I import a file I just wrote to the file system?

For example:

from pathlib import Path
Path("mymodule.py").write_text("""\
def hello():
print("hello world!")

"""
)
from mymodule import hello # may raise "ModuleNotFoundError: No module named 'mymodule'"
hello()

If you see this error, call importlib.invalidate_caches() before importing the module:

import importlib
from pathlib import Path
Path("mymodule.py").write_text("""\
def hello():

(continues on next page)

140 Chapter 3. Table of contents

https://docs.python.org/3.11/library/importlib.html#importlib.invalidate_caches

Pyodide, Release 0.26.0.dev0

(continued from previous page)

print("hello world!")
"""
)
importlib.invalidate_caches() # Make sure Python notices the new .py file
from mymodule import hello
hello()

Why changes made to IndexedDB don’t persist?

Unlike other filesystems, IndexedDB (pyodide.FS.filesystem.IDBFS) is an asynchronous filesystem. This is because
browsers offer only asynchronous interfaces for IndexedDB. So in order to persist changes, you have to call pyodide.
FS.syncfs(). See Emscripten File System API for more details.

How can I access JavaScript objects/attributes in Python if their names are Python keywords?

Some JavaScript objects may have names or attributes which are also Python Keywords, making them difficult to
interact with when importing them into Python. For example, all three of the following uses of runPython will throw
a SyntaxError:

//The built-in method Array.from() overlaps with Python's "from"
pyodide.runPython(`from js import Array; print(Array.from([1,2,3]))`);

//"global" is a valid attribute name in JS, but a reserved keyword in Python
people = {global: "lots and lots"};
pyodide.runPython(`from js import people; print(people.global)`);

//"lambda" is a valid object name in JS, but a reserved keyword in Python
lambda = (x) => {return x + 1};
pyodide.runPython(`from js import lambda; print(lambda(1))`);

If you try to access a Python reserved word followed by one or more underscores on a JsProxy, Pyodide will remove
a single underscore:

pyodide.runPython(`
from js import Array
print(Array.from_([1,2,3]))

`);

If you meant to access the keyword with an underscore at the end, you’ll have to add an extra one:

globalThis.lambda = 7;
globalThis.lambda_ = 8;
pyodide.runPython(`

from js import lambda_, lambda__
print(lambda_, lambda__) # 7, 8

`);

Another example:

people = {global: "lots and lots"};
pyodide.runPython(`

(continues on next page)

3.1. Using Pyodide 141

https://emscripten.org/docs/api_reference/Filesystem-API.html#FS.syncfs
https://emscripten.org/docs/api_reference/Filesystem-API.html#FS.syncfs
https://emscripten.org/docs/api_reference/Filesystem-API.html#persistent-data
https://docs.python.org/3/reference/lexical_analysis.html#keywords

Pyodide, Release 0.26.0.dev0

(continued from previous page)

from js import people
the dir contains global_ but not global:
assert "global_" in dir(people)
assert "global" not in dir(people)
people.global_ = 'even more'
print(people.global_)

`);

You can also use getattr, setattr, and delattr to access the attribute:

pyodide.runPython(`
from js import Array
fromFunc = getattr(Array, 'from')
print(fromFunc([1,2,3]))

`);

people = {global: "lots and lots"};
pyodide.runPython(`

from js import people
setattr(people, 'global', 'even more')
print(getattr(people, 'global'))

`);

For JavaScript globals whose names are keywords, one can similarly use getattr() on the js module itself:

globalThis.lambda = 7;
globalThis.lambda_ = 8;
pyodide.runPython(`

import js
js_lambda = getattr(js, 'lambda')
js_lambda_ = getattr(js, 'lambda_')
js_lambda__ = getattr(js, 'lambda__')
print(js_lambda, js_lambda_, js_lambda__) # 7, 7, 8

`);

3.2 Development

The Development section helps Pyodide contributors to find information about the development process including
making packages to support third party libraries.

3.2.1 Building from sources

Warning: If you are building the latest development version of Pyodide from the main branch, please make sure
to follow the build instructions from the dev version of the documentation at pyodide.org/en/latest/

Pyodide can be built from sources on different platforms,

142 Chapter 3. Table of contents

https://docs.python.org/3.11/library/functions.html#getattr
https://pyodide.org/en/latest/development/building-from-sources.html

Pyodide, Release 0.26.0.dev0

• on Linux it is easiest using the Pyodide Docker image. This approach works with any native operating system
as long as Docker is installed. You can also build on your native Linux OS if the correct build prerequisites are
installed.

• on MacOS it is recommended to install dependencies via conda-forge or using Homebrew, particularly with the
M1 ARM CPU. Building with Docker is possible but very slow.

• It is not possible to build on Windows, but you can use Windows Subsystem for Linux to create a Linux build
environment.

Build instructions

Using Docker

We provide a Debian-based x86_64 Docker image (pyodide/pyodide-env) on Docker Hub with the dependencies
already installed to make it easier to build Pyodide.

Note: These Docker images are also available from the Github packages at github.com/orgs/pyodide/packages.

1. Install Docker

2. From a git checkout of Pyodide, run ./run_docker

3. Run make to build.

Note: You can control the resources allocated to the build by setting the env vars EMSDK_NUM_CORE, EMCC_CORES
and PYODIDE_JOBS (the default for each is 4).

If running make deterministically stops at some point, increasing the maximum RAM usage available to the docker
container might help. (The RAM available to the container is different from the physical RAM capacity of the machine.)
Ideally, at least 3 GB of RAM should be available to the docker container to build Pyodide smoothly. These settings
can be changed via Docker preferences (see here).

You can edit the files in the shared pyodide source folder on your host machine (outside of Docker), and then repeatedly
run make inside the Docker environment to test your changes.

Using the “Docker” dev container

We provide a dev container configuration that is equivalent to the use of ./run_docker script. It can be used in Visual
Studio Code and on GitHub Codespaces. When prompted, select “Docker”.

Using the “Conda” dev container

We provide another dev container configuration that corresponds to the “Linux with conda” method described below.
When Visual Studio Code or GitHub Codespaces prompts for the dev container configuration, select “Conda”.

3.2. Development 143

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://hub.docker.com/r/pyodide/pyodide-env
https://github.com/orgs/pyodide/packages
https://stackoverflow.com/questions/44533319/how-to-assign-more-memory-to-docker-container
https://code.visualstudio.com/docs/devcontainers/containers
https://code.visualstudio.com/docs/devcontainers/containers
https://docs.github.com/en/codespaces/overview
https://code.visualstudio.com/docs/devcontainers/containers
https://docs.github.com/en/codespaces/overview

Pyodide, Release 0.26.0.dev0

Using make

Make sure the prerequisites for emsdk are installed. Pyodide will build a custom, patched version of emsdk, so there is
no need to build it yourself prior.

You need Python 3.11.2 to run the build scripts. To make sure that the correct Python is used during the build it is
recommended to use a virtual environment or a conda environment.

Linux

To build on Linux, you need:

• A working native compiler toolchain, enough to build CPython.

• CMake (required to install Emscripten)

Linux with conda

You would need a working native compiler toolchain, enough to build CPython, for example,

• apt install build-essential on Debian based systems.

• Conda which can be installed from MiniForge

Then install the required Python version and other build dependencies in a separate conda environment,

conda env create -f environment.yml
conda activate pyodide-env

MacOS with conda

You would need,

• System libraries in the root directory: xcode-select --install

• Conda which can be installed using Miniforge (both for Intel and M1 CPU)

Then install the required Python version and other build dependencies in a separate conda environment,

conda env create -f environment.yml
conda activate pyodide-env

MacOS with Homebrew

To build on MacOS with Homebrew, you need:

• System command line tools xcode-select --install

• Homebrew for installing dependencies

• brew install coreutils cmake autoconf automake libtool libffi ccache

• It is also recommended installing the GNU patch and GNU sed (brew install gpatch gnu-sed) and re-
defining them temporarily as patch and sed.

144 Chapter 3. Table of contents

https://github.com/emscripten-core/emsdk
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/#creating-a-virtual-environment
https://devguide.python.org/getting-started/setup-building/index.html#linux
https://devguide.python.org/getting-started/setup-building/index.html#linux
https://github.com/conda-forge/miniforge
https://github.com/conda-forge/miniforge
https://brew.sh/
https://formulae.brew.sh/formula/gnu-sed
https://formulae.brew.sh/formula/gnu-sed

Pyodide, Release 0.26.0.dev0

Note: If you encounter issues with the requirements, it is useful to check the exact list in the Dockerfile which is tested
in the CI.

You can install the Python dependencies from the requirement file at the root of Pyodide folder: pip install -r
requirements.txt

After installing the build prerequisites, run from the command line:

make

Partial builds

To build a subset of available packages in Pyodide, set the environment variable PYODIDE_PACKAGES to a comma
separated list of packages. For instance,

PYODIDE_PACKAGES="toolz,attrs" make

Dependencies of the listed packages will be built automatically as well. The package names must match the folder
names in packages/ exactly; in particular they are case-sensitive.

If PYODIDE_PACKAGES is not set, a minimal set of packages necessary to run the core test suite is in-
stalled, including “micropip”, “pyparsing”, “pytz”, “packaging”, “Jinja2”, “regex”. This is equivalent to setting
PYODIDE_PACKAGES='tag:core' meta-package. Other supported meta-packages are,

• “tag:min-scipy-stack”: includes the “core” meta-package as well as some core packages from the scientific python
stack and their dependencies: “numpy”, “scipy”, “pandas”, “matplotlib”, “scikit-learn”, “joblib”, “pytest”. This
option is non exhaustive and is mainly intended to make build faster while testing a diverse set of scientific
packages.

• “*” builds all packages

• You can exclude a package by prefixing it with “!”.

micropip is always automatically included.

Environment variables

The following environment variables additionally impact the build:

• PYODIDE_JOBS: the -j option passed to the emmake make command when applicable for parallel compilation.
Default: 3.

• PYODIDE_BASE_URL: Base URL where Pyodide packages are deployed. It must end with a trailing /. Default:
./ to load Pyodide packages from the same base URL path as where pyodide.js is located. Example: https:/
/cdn.jsdelivr.net/pyodide/dev/full/

• EXTRA_CFLAGS: Add extra compilation flags.

• EXTRA_LDFLAGS: Add extra linker flags.

Setting EXTRA_CFLAGS="-D DEBUG_F" provides detailed diagnostic information whenever error branches are taken
inside the Pyodide core code. These error messages are frequently helpful even when the problem is a fatal configuration
problem and Pyodide cannot even be initialized. These error branches occur also in correctly working code, but they
are relatively uncommon so in practice the amount of noise generated isn’t too large. The shorthand make debug
automatically sets this flag.

3.2. Development 145

https://github.com/pyodide/pyodide/blob/main/Dockerfile

Pyodide, Release 0.26.0.dev0

In certain cases, setting EXTRA_LDFLAGS="-s ASSERTIONS=1 or ASSERTIONS=2 can also be helpful, but this slows
down the linking and the runtime speed of Pyodide a lot and generates a large amount of noise in the console.

3.2.2 Creating a Pyodide package

It is recommended to look into how other similar packages are built in Pyodide. If you encounter difficulties in building
your package after trying the steps listed here, open a new Pyodide issue.

Determining if creating a Pyodide package is necessary

If you wish to use a package in Pyodide that is not already included in the packages folder, first you need to determine
whether it is necessary to package it for Pyodide. Ideally, you should start this process with package dependencies.

Most pure Python packages can be installed directly from PyPI with micropip.install() if they have a pure Python
wheel. Check if this is the case by trying micropip.install("package-name").

If there is no wheel on PyPI, but you believe there is nothing preventing it (it is a Python package without C extensions):

• you can create the wheel yourself by running

python -m pip install build
python -m build

from within the package folder where the setup.py are located. See the Python packaging guide for more
details. Then upload the wheel file somewhere (not to PyPI) and install it with micropip via its URL.

• please open an issue in the package repository asking the authors to upload the wheel.

If however the package has C extensions or its code requires patching, then continue to the next steps.

If you are on Windows, you will need to use WSL 2.

Note: To determine if a package has C extensions, check if its setup.py contains any compilation commands.

Building Python wheels (out of tree)

Starting with Pyodide 0.22.0, it is now possible to build Python wheels for Pyodide for many packages separately from
the Pyodide package tree. See Building and testing Python packages out of tree for more details.

Building a Python package (in tree)

This section documents how to add a new package to the Pyodide distribution.

As a starting point, you may want to look at the meta.yaml files for some other Pyodide packages in the packages/
folder.

146 Chapter 3. Table of contents

https://github.com/pyodide/pyodide/issues
https://github.com/pyodide/pyodide/tree/main/packages
https://micropip.pyodide.org/en/v0.2.2/project/api.html#micropip.install
https://packaging.python.org/tutorials/packaging-projects/#generating-distribution-archives
https://github.com/pyodide/pyodide/tree/main/packages
https://github.com/pyodide/pyodide/tree/main/packages

Pyodide, Release 0.26.0.dev0

Prerequisites

First clone the Pyodide git repository:

git clone https://github.com/pyodide/pyodide
cd pyodide

If you have trouble with missing dependencies (or are not running linux) you can use the pyodide-env docker container
with:

./run_docker

This will mount the current working directory as /src within the container so if you build the package within the
container the files created will persist in the directory after you exit the container.

You should install pyodide-build:

pip install -e ./pyodide-build

If you want to build the package, you will need to build Python which you can do as follows:

make -C emsdk
make -C cpython

This also builds the appropriate version of Emscripten.

Creating the meta.yaml file

To build a Python package in tree, you need to create a meta.yaml file that defines a “recipe” which may include build
commands and “patches” (source code edits), amongst other things.

If your package is on PyPI, the easiest place to start is with the pyodide skeleton pypi command. Run

pyodide skeleton pypi <package-name>

This will generate a meta.yaml file under packages/<package-name>/ (see The meta.yaml specification). The
pyodide cli tool will populate the latest version, the download link and the sha256 hash by querying PyPI.

It doesn’t currently handle package dependencies, so you will need to specify those yourself in the requirements
section of the meta.yaml file.

requirements:
host:
Dependencies that are needed to build the package
- cffi

run:
Dependencies that are needed to run the package
- cffi
- numpy

Note: To determine build and runtime dependencies, including for non Python libraries, it is often useful to check
if the package was already built on conda-forge look at the corresponding meta.yaml file. This can be done ei-
ther by checking if the URL https://github.com/conda-forge/<package-name>-feedstock/blob/master/
recipe/meta.yaml exists, or by searching the conda-forge GitHub org for the package name.

3.2. Development 147

https://conda-forge.org/
https://github.com/conda-forge/

Pyodide, Release 0.26.0.dev0

The Pyodide meta.yaml file format was inspired by the one in conda, however it is not strictly compatible.

Building the package

Once the meta.yaml file is ready, build the package with the following command

pyodide build-recipes <package-name> --install

and see if there are any errors.

Loading the package

If the build succeeds you can try to load the package:

1. Build pyodide via PYODIDE_PACKAGES=tag:core make.

2. Serve the dist directory with python -m http.server --directory ./dist. If you use docker, you can
execute this either outside of the docker container or make sure to forward a port by setting the environment
variable PYODIDE_SYSTEM_PORT or starting docker with ./run_docker -p <port>.

3. Open localhost:8000/console.html and try to import the package.

4. You can test the package in the repl.

Fixing build issues

If there are errors you might need to add a build script to set You can add extra build commands to the meta.yaml like
this:

build:
script: |

wget https://example.com/file.tar.gz
export MY_ENV_VARIABLE=FOO

You can also inject extra compile and link flags with the cflags and ldflags keys. You can modify the wheel after
it is built with the post: key.

If you need to patch the package’s source to fix build issues, see the section on Generating patches below.

Writing tests for your package

The tests should go in one or more files like packages/<package-name>/test_xxx.py. Most packages have one
test file named test_<package-name>.py. The tests should look like:

from pytest_pyodide import run_in_pyodide

@run_in_pyodide(packages=["<package-name>"])
def test_mytestname(selenium):
import <package-name>
assert package.do_something() == 5
...

148 Chapter 3. Table of contents

Pyodide, Release 0.26.0.dev0

If you want to run your package’s full pytest test suite and your package vendors tests you can do it like:

from pytest_pyodide import run_in_pyodide

@run_in_pyodide(packages=["<package-name>-tests", "pytest"])
def test_mytestname(selenium):
import pytest
pytest.main(["--pyargs", "<package-name>", "-k", "some_filter", ...])

you can put whatever command line arguments you would pass to pytest as separate entries in the list. For more info
on run_in_pyodide see pytest-pyodide.

Generating patches

If the package has a git repository, the easiest way to make a patch is usually:

1. Clone the git repository of the package. You might want to use the options git clone --depth 1 --branch
<version>. Find the appropriate tag given the version of the package you are trying to modify.

2. Make a new branch with git checkout -b pyodide-version (e.g., pyodide-1.21.4).

3. Make whatever changes you want. Commit them. Please split your changes up into focused commits. Write
detailed commit messages! People will read them in the future, particularly when migrating patches or trying
to decide if they are no longer needed. The first line of each commit message will also be used in the patch file
name.

4. Use git format-patch <version> -o <pyodide-root>/packages/<package-name>/patches/ to
generate a patch file for your changes and store it directly into the patches folder.

5. You also need to add the patches to the meta.yaml file:

source:
url: https://files.pythonhosted.org/packages/somehash/some-pkg-1.2.3.tar.gz
sha256: somehash
patches:
- 0001-patch-some-thing.patch
- 0002-patch-some-other-thing.patch

The following command will write out the properly formatted file list to use in the patches key:

find patches/ -type f | sed 's/^/ - /g'

Upgrading a package

To upgrade a package’s version to the latest one available on PyPI, do

pyodide skeleton pypi <package-name> --update

Because this does not handle package dependencies, you have to manually check whether the requirements section
of the meta.yaml file needs to be updated for updated dependencies.

Upgrading a package’s version may lead to new build issues that need to be resolved (see above) and any patches need
to be checked and potentially migrated (see below).

3.2. Development 149

https://github.com/pyodide/pytest-pyodide

Pyodide, Release 0.26.0.dev0

Migrating Patches

When you want to upgrade the version of a package, you will need to migrate the patches. To do this:

1. Clone the git repository of the package. You might want to use the options git clone --depth 1 --branch
<version-tag>.

2. Make a new branch with git checkout -b pyodide-old-version (e.g., pyodide-1.21.4).

3. Apply the current patches with git am <pyodide-root>/packages/<package-name>/patches/*.

4. Make a new branch git checkout -b pyodide-new-version (e.g., pyodide-1.22.0)

5. Rebase the patches with git rebase old-version --onto new-version (e.g., git rebase pyodide-1.
21.4 --onto pyodide-1.22.0). Resolve any rebase conflicts. If a patch has been upstreamed, you can drop
it with git rebase --skip.

6. Remove old patches with rm <pyodide-root>/packages/<package-name>/patches/*.

7. Use git format-patch <version-tag> -o <pyodide-root>/packages/<package-name>/patches/
to generate new patch files.

Upstream your patches!

Please create PRs or issues to discuss with the package maintainers to try to find ways to include your patches into the
package. Many package maintainers are very receptive to including Pyodide-related patches and they reduce future
maintenance work for us.

The package build pipeline

Pyodide includes a toolchain to add new third-party Python libraries to the build. We automate the following steps:

• If source is a url (not in-tree):

– Download a source archive or a pure python wheel (usually from PyPI)

– Confirm integrity of the package by comparing it to a checksum

– If building from source (not from a wheel):

∗ Apply patches, if any, to the source distribution

∗ Add extra files, if any, to the source distribution

• If the source is not a wheel (building from a source archive or an in-tree source):

– Run build/script if present

– Modify the PATH to point to wrappers for gfortran, gcc, g++, ar, and ld that preempt compiler calls,
rewrite the arguments, and pass them to the appropriate emscripten compiler tools.

– Using pypa/build:

∗ Create an isolated build environment. Install symbolic links from this isolated environment to “host”
copies of certain unisolated packages.

∗ Install the build dependencies requested in the package build-requires. (We ignore all version
constraints on the unisolated packages, but version constraints on other packages are respected.

∗ Run the PEP 517 build backend associated to the project to generate a wheel.

• Unpack the wheel with python -m wheel unpack.

150 Chapter 3. Table of contents

https://peps.python.org/pep-0517/

Pyodide, Release 0.26.0.dev0

• Run the build/post script in the unpacked wheel directory if it’s present.

• Unvendor unit tests included in the installation folder to a separate zip file <package name>-tests.zip

• Repack the wheel with python -m wheel pack

Lastly, a pyodide-lock.json file is created containing the dependency tree of all packages, so pyodide.
loadPackage() can load a package’s dependencies automatically.

Partial Rebuilds

By default, each time you run pyodide build-recipes, it will delete the entire source directory and replace it with
a fresh copy from the download url. This is to ensure build repeatability. For debugging purposes, this is likely to be
undesirable. If you want to try out a modified source tree, you can pass the flag --continue and build-recipes will
try to build from the existing source tree. This can cause various issues, but if it works it is much more convenient.

Using the --continue flag, you can modify the sources in tree to fix the build, then when it works, copy the modified
sources into your checked out copy of the package source repository and use git format-patch to generate the patch.

C library dependencies

Some Python packages depend on certain C libraries, e.g. lxml depends on libxml.

To package a C library, create a directory in packages/ for the C library. In the directory, you should write meta.yaml
that specifies metadata about the library. See The meta.yaml specification for more details.

The minimal example of meta.yaml for a C library is:

package:
name: <name>
version: <version>

source:
url: <url>
sha256: <sha256>

requirements:
run:

- <requirement>

build:
type: static_library
script: |

emconfigure ./configure
emmake make -j ${PYODIDE_JOBS:-3}

You can use the meta.yaml of other C libraries such as libxml as a starting point.

After packaging a C library, it can be added as a dependency of a Python package like a normal dependency. See lxml
and libxml for an example (and also scipy and OpenBLAS).

Remark: Certain C libraries come as emscripten ports, and do not have to be built manually. They can be used by
adding e.g. -s USE_ZLIB in the cflags of the Python package. See e.g. matplotlib for an example. The full list
of libraries with Emscripten ports is here.

3.2. Development 151

https://github.com/pyodide/pyodide/blob/main/packages/libxml/meta.yaml
https://github.com/orgs/emscripten-ports/repositories?type=all
https://github.com/orgs/emscripten-ports/repositories?type=all

Pyodide, Release 0.26.0.dev0

Structure of a Pyodide package

Pyodide is obtained by compiling CPython into WebAssembly. As such, it loads packages the same way as CPython
— it looks for relevant files .py and .so files in the directories in sys.path. When installing a package, our job is to
install our .py and .so files in the right location in emscripten’s virtual filesystem.

Wheels are just zip archives, and to install them we unzip them into the site-packages directory. If there are any
.so files, we also need to load them at install time: WebAssembly must be loaded asynchronously, but Python imports
are synchronous so it is impossible to load .so files lazily.

The meta.yaml specification

Packages are defined by writing a meta.yaml file. The format of these files is based on the meta.yaml files used to
build Conda packages, though it is much more limited. The most important limitation is that Pyodide assumes there
will only be one version of a given library available, whereas Conda allows the user to specify the versions of each
package that they want to install. Despite the limitations, it is recommended to use existing conda package definitions
as a starting point to create Pyodide packages. In general, however, one should not expect Conda packages to “just
work” with Pyodide, see #795

This is unstable

The Pyodide build system is under fairly active development (as of 2022/03/13). The next couple of releases are likely
to include breaking changes.

The supported keys in the meta.yaml file are described below.

package

package/name

The name of the package. It must match the name of the package used when expanding the tarball, which is sometimes
different from the name of the package in the Python namespace when installed. It must also match the name of the
directory in which the meta.yaml file is placed. It can only contain alphanumeric characters, -, and _.

package/version

The version of the package.

package/top-level

The list of top-level import name for the package. This key is used in pyodide.loadPackagesFromImports(). For
example, the top-level import name for the scikit-learn is sklearn. Some packages may have multiple top-level
import names. For instance, setuptools exposes setuptools and pkg_resources as a top-level import names.

152 Chapter 3. Table of contents

https://docs.conda.io/projects/conda-build/en/latest/resources/define-metadata.html
https://github.com/pyodide/pyodide/pull/795

Pyodide, Release 0.26.0.dev0

package/tag

The list of tags of the package. This is meta information used to group packages by functionality. Normally this is not
needed. The following tags are currently used in Pyodide:

• always: This package is always built.

• core: This package is used in the Pyodide core test suite.

• min-scipy-stack: This package is part of the minimal scipy stack.

source

source/url

The URL of the source tarball.

The tarball may be in any of the formats supported by Python’s shutil.unpack_archive(): tar, gztar, bztar,
xztar, and zip.

source/extract_dir

The top level directory name of the contents of the source tarball (i.e. once you extract the tarball, all the contents are
in the directory named source/extract_dir). This defaults to the tarball name (sans extension).

source/path

Alternatively to source/url, a relative or absolute path can be specified as package source. This is useful for local
testing or building packages which are not available online in the required format.

If a path is specified, any provided checksums are ignored.

source/sha256

The SHA256 checksum of the tarball. It is recommended to use SHA256 instead of MD5. At most one checksum entry
should be provided per package.

source/patches

A list of patch files to apply after expanding the tarball. These are applied using patch -p1 from the root of the source
tree.

3.2. Development 153

https://docs.python.org/3.11/library/shutil.html#shutil.unpack_archive

Pyodide, Release 0.26.0.dev0

source/extras

Extra files to add to the source tree. This should be a list where each entry is a pair of the form (src, dst). The src
path is relative to the directory in which the meta.yaml file resides. The dst path is relative to the root of source tree
(the expanded tarball).

build

build/cflags

Extra arguments to pass to the compiler when building for WebAssembly.

(This key is not in the Conda spec).

build/cxxflags

Extra arguments to pass to the compiler when building C++ files for WebAssembly. Note that both cflags and
cxxflags will be used when compiling C++ files. A common example would be to use -std=c++11 for code that
makes use of C++11 features.

(This key is not in the Conda spec).

build/ldflags

Extra arguments to pass to the linker when building for WebAssembly.

(This key is not in the Conda spec).

build/exports

Which symbols should be exported from the shared object files. Possible values are:

• pyinit: The default. Only export Python module initialization symbols of the form PyInit_some_module.

• requested: Export the functions that are marked as exported in the object files. Switch to this if pyinit doesn’t
work. Useful for packages that use ctypes or dlsym to access symbols.

• whole_archive: Uses -Wl,--whole-archive to force inclusion of all symbols. Use this when neither pyinit
nor explicit work.

build/backend-flags

Extra flags to pass to the build backend (e.g., setuptools, flit, etc).

154 Chapter 3. Table of contents

Pyodide, Release 0.26.0.dev0

build/type

Type of the package. Possible values are:

• package (default): A normal Python package, built to a wheel file.

• static_library: A static library.

• shared_library: A shared library.

• cpython_module: A CPython stdlib extension module. This is used for unvendoring CPython modules, and
should not be used for other purposes.

If you are building ordinary Python package, you don’t need to set this key. But if you are building a static or shared
library, you need to set this to static_library or shared_library respectively.

Static and shared libraries are not Python packages themselves, but are needed for other python packages. For libraries,
the script specified in the build/script section is run to compile the library.

The difference between static_library and shared_library is that static_library is statically linked into the
other packages, so it is required only in the build time, while shared_library is dynamically linked, so it is required
in the runtime. When building a shared library, you should copy the built libraries into the $DISTDIR. Files or folders
in this folder will be packaged to make the Pyodide package.

See the zlib meta.yaml for an example of a static library specification, and the OpenBLAS meta.yaml for an example
of a shared library specification.

build/script

The script section is required for a library package (build/library set to true). For a Python package this section is
optional. If it is specified for a Python package, the script section will be run before the build system runs setup.py.
This script is run by bash in the directory where the tarball was extracted.

There are special environment variables defined:

• $PKGDIR: The directory in which the meta.yaml file resides.

• $PKG_VESRION: The version of the package

• $PKG_BUILD_DIR: The directory where the tarball was extracted.

• $DISTDIR: The directory where the built wheel or library should be placed. If you are building a shared library,
you should copy the built libraries into this directory.

(These keys are not in the Conda spec).

build/cross-script

This script will run after build/script. The difference is that it runs with the target environment variables and
sysconfigdata and with the pywasmcross compiler symlinks. Any changes to the environment will persist to the
main build step but will not be seen in the build/post step (or anything else done outside of the cross build environ-
ment). The working directory for this script is the source directory.

3.2. Development 155

https://github.com/pyodide/pyodide/blob/main/packages/zlib/meta.yaml
https://github.com/pyodide/pyodide/blob/main/packages/openblas/meta.yaml

Pyodide, Release 0.26.0.dev0

build/post

Shell commands to run after building the package. This command runs in the directory which contains the built
wheel unpacked with python -m wheel unpack. So it’s possible to manually add, delete, change, move files etc.
See the [setuptools meta.yaml](https://github.com/pyodide/pyodide/ blob/main/packages/setuptools/meta.yaml) for an
example of the usage of this key.

build/unvendor-tests

Whether to unvendor tests found in the installation folder to a separate package <package-name>-tests. If this option
is true and no tests are found, the test package will not be created. Default: true.

build/vendor-sharedlib

If set to true, shared libraries that are required by the package will be vendored into the package after the build. This
is similar to what auditwheel repair does, but it is done in a way that is compatible with Pyodide and Emscripten
dynamic linking. Default: false.

requirements

requirements/run

A list of required packages at runtime.

(Unlike conda, this only supports package names, not versions).

requirements/host

A list of Pyodide packages that are required when building a package. It represents packages that need to be specific
to the target platform.

For instance, when building libxml, zlib needs to be built for WASM first, and so it’s a host dependency. This is
unrelated to the fact that the build system might already have zlib present.

requirements/executable

A list of executables that are required when building a package.

Note that unlike conda, specifying executables in this key doesn’t actually install any of them. This key exists to halt
build earlier if required executables are not available.

156 Chapter 3. Table of contents

https://github.com/pypa/auditwheel

Pyodide, Release 0.26.0.dev0

test

test/imports

List of imports to test after the package is built.

Supported Environment Variables

The following environment variables can be used in the scripts in the meta.yaml files:

• PYODIDE_ROOT: The path to the base Pyodide directory

• PYMAJOR: Current major Python version

• PYMINOR: Current minor Python version

• PYMICRO: Current micro Python version

• SIDE_MODULE_CFLAGS: The standard CFLAGS for a side module. Use when compiling libraries or shared
libraries.

• SIDE_MODULE_LDFLAGS: The standard LDFLAGS for a side module. Use when linking a shared library.

• NUMPY_LIB: Use -L$NUMPY_LIB as a ldflag when linking -lnpymath or -lnpyrandom.

Rust/PyO3 Packages

We currently build cryptography which is a Rust extension built with PyO3 and setuptools-rust. It should be
reasonably easy to build other Rust extensions. If you want to build a package with Rust extension, you will need Rust
>= 1.41, and you need to set the rustup toolchain to nightly, and the target to wasm32-unknown-emscripten in the
build script as shown here, but other than that there may be no other issues if you are lucky.

As mentioned here, by default certain wasm-related RUSTFLAGS are set during build.script and can be removed
with export RUSTFLAGS="".

If your project builds using maturin, you need to use maturin 0.14.14 or later. It is pretty easy to patch an existing
project (see projects/fastparquet/meta.yaml for an example)

3.2.3 Building and testing Python packages out of tree

This is some information about how to build and test Python packages against Pyodide out of tree (for instance in your
package’s CI or for use with private packages).

Pyodide currently only supports Linux for out of tree builds, though there is a good change it will work in MacOS too.
If you are using Windows, try Windows Subsystem for Linux.

3.2. Development 157

https://github.com/pyodide/pyodide/blob/main/packages/cryptography/meta.yaml
https://github.com/pyodide/pyodide/issues/2706#issuecomment-1154655224

Pyodide, Release 0.26.0.dev0

Building binary packages for Pyodide

If your package is a pure Python package (i.e., if the wheel ends in py3-none-any.whl) then follow the official PyPA
documentation on building wheels Otherwise, the procedure is as follows.

Install pyodide-build

pip install pyodide-build

Set up Emscripten

You need to download the Emscripten developer toolkit:

git clone https://github.com/emscripten-core/emsdk.git
cd emsdk

then you can install the appropriate version of Emscripten:

PYODIDE_EMSCRIPTEN_VERSION=$(pyodide config get emscripten_version)
./emsdk install ${PYODIDE_EMSCRIPTEN_VERSION}
./emsdk activate ${PYODIDE_EMSCRIPTEN_VERSION}
source emsdk_env.sh

If you restart your shell, you will need to run source emsdk_env.sh again.

Build the WASM/Emscripten wheel

Change directory into the package folder where the setup.py or pyproject.toml file is located. You should be in a
shell session where you ran source emsdk_env.sh. Then run

pyodide build

in the package folder . This command produces a wheel in the dist/ folder, similarly to the PyPA build command.

If you need to add custom compiler / linker flags to the compiler invocations, you can set the CFLAGS, CXXFLAGS
and LDFLAGS environment variables. For instance, to make a debug build, you can use: CFLAGS=-g2 LDFLAGS=g2
pyodide build.

pyodide build invokes a slightly modified version of the pypa/build build frontend so the behavior should be
similar to what happens if you do:

pip install build
python -m build

If you run into problems, make sure that building a native wheel with pypa/build works. If it does, then please open
an issue about it.

158 Chapter 3. Table of contents

https://packaging.python.org/en/latest/tutorials/packaging-projects/#generating-distribution-archives
https://pypa-build.readthedocs.io/en/latest/

Pyodide, Release 0.26.0.dev0

Serve the wheel

Serve the wheel via a file server e.g., python3.10 -m http.server --directory dist. Then you can install it
with pyodide.loadPackage or micropip.install by URL.

Notes

• the resulting package wheels have a file name of the form *-cp310-cp310-emscripten_3_1_27_wasm32.
whl and are compatible only for a given Python and Emscripten versions. In the Pyodide distribution, Python
and Emscripten are updated simultaneously.

• for now, PyPi does not support emscripten/wasm32 wheels so you will not be able to upload them there.

Testing packages against Pyodide

Pyodide provides an experimental command line runner for testing packages against Pyodide. Using it requires nodejs
version 14 or newer.

The way it works is simple: you can create a virtual environment with:

pyodide venv .venv-pyodide

Activate it just like a normal virtual environment:

source .venv-pyodide/bin/activate

As a warning, things are pretty weird inside of the Pyodide virtual environment because python points to the Pyodide
Python runtime. Any program that uses Python and is sensitive to the current virtual environment will probably break.

You can install whatever dependencies you need with pip. For a pure Python package, the following will work:

pip install -e .

For a binary package, you will need to build a wheel with pyodide build and then point pip directly to the built
wheel. For now, editable installs won’t work with binary packages.

Build the binary package
pyodide build
Install it
pip install dist/the_wheel-cp310-cp310-emscripten_3_1_20_wasm32.whl[tests]

To test, you can generally run the same script as you would usually do. For many packages this will be:

python -m pytest

but for instance numpy uses a file called runtests.py; the following works:

python runtests.py

and you can pass options to it just like normal. Currently subprocess doesn’t work, so if you have a test runner that
uses subprocess then it cannot be used.

3.2. Development 159

Pyodide, Release 0.26.0.dev0

Build Github actions example

Here is a complete example of a Github Actions workflow for building a Python wheel out of tree:

runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: 3.11.2

- run: |
pip install pyodide-build>=0.23.0
echo EMSCRIPTEN_VERSION=$(pyodide config get emscripten_version) >> $GITHUB_ENV

- uses: mymindstorm/setup-emsdk@v14
with:
version: ${{ env.EMSCRIPTEN_VERSION }}

- run: pyodide build

For an example “in the wild” of a github action to build and test a wheel against Pyodide, see the numpy CI

3.2.4 How to Contribute

Thank you for your interest in contributing to Pyodide! There are many ways to contribute, and we appreciate all of
them. Here are some guidelines & pointers for diving into it.

Development Workflow

To contribute code, see the following steps,

1. Fork the Pyodide repository https://github.com/pyodide/pyodide on Github.

2. If you are on Linux, you can skip this step. On Windows and MacOS you have a choice. The first option is to
manually install Docker:

• on MacOS follow these instructions

• on Windows, install WSL 2, then Docker. Note that Windows filesystem access from WSL2 is very slow
and should be avoided when building Pyodide.

The second option is to use a service that provides a Linux development environment, such as

• Github Codespaces

• gitpod.io

• or a remote Linux VM with SSH connection.

3. Clone your fork of Pyodide

git clone https://github.com/<your-username>/pyodide.git

and add the upstream remote,

git remote add upstream https://github.com/pyodide/pyodide.git

4. While the build will happen inside Docker you still need a development environment with Python 3.11 and ideally
Node.js. These can be installed for instance with,

160 Chapter 3. Table of contents

https://github.com/numpy/numpy/blob/main/.github/workflows/emscripten.yml
https://github.com/pyodide/pyodide
https://docs.docker.com/desktop/mac/install/
https://docs.microsoft.com/en-us/windows/wsl/install
https://github.com/features/codespaces
https://gitpod.io

Pyodide, Release 0.26.0.dev0

conda env create -f environment.yml
conda activate pyodide-env

or via your system package manager.

5. Install requirements (it’s recommended to use a virtualenv or a conda env),

pip install -r requirements.txt

6. Enable pre-commit for code style,

pre-commit install

This will run a set of linters for each commit.

7. Follow Building from sources instructions.

8. See Testing and benchmarking documentation.

Code of Conduct

Pyodide has adopted a Code of Conduct that we expect all contributors and core members to adhere to.

Development

Work on Pyodide happens on GitHub. Core members and contributors can make Pull Requests to fix issues and add
features, which all go through the same review process. We’ll detail how you can start making PRs below.

We’ll do our best to keep main in a non-breaking state, ideally with tests always passing. The unfortunate reality of
software development is sometimes things break. As such, main cannot be expected to remain reliable at all times. We
recommend using the latest stable version of Pyodide.

Pyodide follows semantic versioning - major versions for breaking changes (x.0.0), minor versions for new features
(0.x.0), and patches for bug fixes (0.0.x).

We keep a file, docs/changelog.md, outlining changes to Pyodide in each release. We like to think of the audience for
changelogs as non-developers who primarily run the latest stable. So the change log will primarily outline user-visible
changes such as new features and deprecations, and will exclude things that might otherwise be inconsequential to the
end user experience, such as infrastructure or refactoring.

Bugs & Issues

We use Github Issues for announcing and discussing bugs and features. Use this link to report a bug or issue. We
provide a template to give you a guide for how to file optimally. If you have the chance, please search the existing issues
before reporting a bug. It’s possible that someone else has already reported your error. This doesn’t always work, and
sometimes it’s hard to know what to search for, so consider this extra credit. We won’t mind if you accidentally file a
duplicate report.

Core contributors are monitoring new issues & comments all the time, and will label & organize issues to align with
development priorities.

3.2. Development 161

https://pre-commit.com/
http://semver.org/
https://github.com/pyodide/pyodide/issues
https://github.com/pyodide/pyodide/issues/new

Pyodide, Release 0.26.0.dev0

How to Contribute

Pull requests are the primary mechanism we use to change Pyodide. GitHub itself has some great documentation on
using the Pull Request feature. We use the “fork and pull” model described here, where contributors push changes to
their personal fork and create pull requests to bring those changes into the source repository.

Please make pull requests against the main branch.

If you’re looking for a way to jump in and contribute, our list of good first issues is a great place to start.

If you’d like to fix a currently-filed issue, please take a look at the comment thread on the issue to ensure no one is
already working on it. If no one has claimed the issue, make a comment stating you’d like to tackle it in a PR. If
someone has claimed the issue but has not worked on it in a few weeks, make a comment asking if you can take over,
and we’ll figure it out from there.

We use pytest, driving Selenium as our testing framework. Every PR will automatically run through our tests, and our
test framework will alert you on GitHub if your PR doesn’t pass all of them. If your PR fails a test, try to figure out
whether or not you can update your code to make the test pass again, or ask for help. As a policy we will not accept a
PR that fails any of our tests, and will likely ask you to add tests if your PR adds new functionality. Writing tests can
be scary, but they make open-source contributions easier for everyone to assess. Take a moment and look through how
we’ve written our tests, and try to make your tests match. If you are having trouble, we can help you get started on our
test-writing journey.

All code submissions should pass make lint. Python is checked with flake8, black and mypy. JavaScript is checked
with prettier. C is checked against the Mozilla style in clang-format.

Contributing to the “core” C Code

See Contributing to the “core” C Code.

Documentation

Documentation is a critical part of any open source project, and we are very welcome to any documentation improve-
ments. Pyodide has a documentation written in Markdown in the docs/ folder. We use the MyST for parsing Mark-
down in sphinx. You may want to have a look at the MyST syntax guide when contributing, in particular regarding
cross-referencing sections.

Building the docs

From the directory docs, first install the Python dependencies with pip install -r requirements-doc.txt. You
also need to install JsDoc, which is a node dependency. Install it with sudo npm install -g jsdoc. Then to build
the docs run make html. The built documentation will be in the subdirectory docs/_build/html. To view them, cd
into _build/html and start a file server, for instance http-server.

162 Chapter 3. Table of contents

https://help.github.com/articles/about-pull-requests/
https://help.github.com/articles/about-pull-requests/
https://github.com/pyodide/pyodide/labels/good%20first%20issue
https://pytest.org
https://www.seleniumhq.org
https://myst-parser.readthedocs.io/en/latest/using/syntax.html#targets-and-cross-referencing
https://myst-parser.readthedocs.io/en/latest/using/syntax.html#the-myst-syntax-guide
https://myst-parser.readthedocs.io/en/latest/using/syntax.html#targets-and-cross-referencing

Pyodide, Release 0.26.0.dev0

Migrating patches

It often happens that patches need to be migrated between different versions of upstream packages.

If patches fail to apply automatically, one solution can be to

1. Checkout the initial version of the upstream package in a separate repo, and create a branch from it.

2. Add existing patches with git apply <path.path>

3. Checkout the new version of the upstream package and create a branch from it.

4. Cherry-pick patches to the new version,

git cherry-pick <commit-hash>

and resolve conflicts.

5. Re-export last N commits as patches e.g.

git format-patch -<N> -N --no-stat HEAD -o <out_dir>

Maintainer information

For information about making releases see Maintainer information.

License

All contributions to Pyodide will be licensed under the Mozilla Public License 2.0 (MPL 2.0). This is considered a
“weak copyleft” license. Check out the tl;drLegal entry for more information, as well as Mozilla’s MPL 2.0 FAQ if you
need further clarification on what is and isn’t permitted.

Get in Touch

• Gitter: #pyodide channel at gitter.im

Contributing to the “core” C Code

This file is intended as guidelines to help contributors trying to modify the C source files in src/core.

What the files do

The primary purpose of core is to implement type translations between Python and JavaScript. Here is a breakdown
of the purposes of the files.

• main – responsible for configuring and initializing the Python interpreter, initializing the other source files, and
creating the _pyodide_core module which is used to expose Python objects to pyodide_py. main.c also tries
to generate fatal initialization error messages to help with debugging when there is a mistake in the initialization
code.

• keyboard_interrupt – This sets up the keyboard interrupts system for using Pyodide with a webworker.

3.2. Development 163

https://www.mozilla.org/en-US/MPL/2.0/
https://tldrlegal.com/license/mozilla-public-license-2.0-(mpl-2)
https://www.mozilla.org/en-US/MPL/2.0/FAQ/
https://gitter.im/pyodide/community

Pyodide, Release 0.26.0.dev0

Backend utilities

• hiwire – A helper framework. It is impossible for wasm to directly hold owning references to JavaScript objects.
The primary purpose of hiwire is to act as a surrogate owner for JavaScript references by holding the references in
a JavaScript Map. hiwire also defines a wide variety of EM_JS helper functions to do JavaScript operations on the
held objects. The primary type that hiwire exports is JsRef. References are created with Hiwire.new_value
(only can be done from JavaScript) and must be destroyed from C with hiwire_decref or hiwire_CLEAR, or
from JavaScript with Hiwire.decref.

• error_handling – defines macros useful for error propagation and for adapting JavaScript functions to the
CPython calling convention. See more in the Error Handling Macros section.

Type conversion from JavaScript to Python

• js2python – Translates basic types from JavaScript to Python, leaves more complicated stuff to jsproxy.

• jsproxy – Defines Python classes to proxy complex JavaScript types into Python. A complex file responsible
for many of the core behaviors of Pyodide.

Type conversion from Python to JavaScript

• python2js – Translates types from Python to JavaScript, implicitly converting basic types and creating pyprox-
ies for others. It also implements explicit conversion from Python to JavaScript (the toJs method).

• python2js_buffer – Attempts to convert Python objects that implement the Python Buffer Protocol. This
includes bytes objects, memoryviews, array.array and a wide variety of types exposed by extension modules
like numpy. If the data is a 1d array in a contiguous block it can be sliced directly out of the wasm heap to produce
a JavaScript TypedArray, but JavaScript does not have native support for pointers, so higher dimensional arrays
are more complicated.

• pyproxy – Defines a JavaScript Proxy object that passes calls through to a Python object. Another impor-
tant core file, PyProxy.apply is the primary entrypoint into Python code. pyproxy.c is much simpler than
jsproxy.c though.

CPython APIs

Conventions for indicating errors

The two main ways to indicate errors:

1. If the function returns a pointer, (most often PyObject*, char*, or const char*) then to indicate an error set
an exception and return NULL.

2. If the function returns int or float and a correct output must be nonnegative, to indicate an error set an exception
and return -1.

Certain functions have “successful errors” like PyIter_Next (successful error is StopIteration) and
PyDict_GetItemWithError (successful error is KeyError). These functions will return NULL without setting an
exception to indicate the “successful error” occurred. Check what happened with PyErr_Occurred. Also, functions
that return int for which -1 is a valid return value will return -1 with no error set to indicate that the result is -1 and
-1 with an error set if an error did occur. The simplest way to handle this is to always check PyErr_Occurred.

Lastly, the argument parsing functions PyArg_ParseTuple, PyArg_Parse, etc are edge cases. These return true on
success and return false and set an error on failure.

164 Chapter 3. Table of contents

https://docs.python.org/3/c-api/buffer.html

Pyodide, Release 0.26.0.dev0

Python APIs to avoid:

• PyDict_GetItem, PyDict_GetItemString, and _PyDict_GetItemId These APIs do not do cor-
rect error reporting and there is talk in the Python community of deprecating them going for-
ward. Instead, use PyDict_GetItemWithError and _PyDict_GetItemIdWithError (there is no
PyDict_GetItemStringWithError API because use of GetXString APIs is also discouraged).

• PyObject_HasAttrString, PyObject_GetAttrString, PyDict_GetItemString,
PyDict_SetItemString, PyMapping_HasKeyString etc, etc. These APIs cause wasteful repeated string con-
version. If the string you are using is a constant, e.g., PyDict_GetItemString(dict, "identifier"), then
make an id with Py_Identifier(identifier) and then use _PyDict_GetItemId(&PyId_identifier).
If the string is not constant, convert it to a Python object with PyUnicode_FromString() and then use e.g.,
PyDict_GetItem.

• PyModule_AddObject. This steals a reference on success but not on failure and requires unique cleanup code.
Instead, use PyObject_SetAttr.

Error Handling Macros

The file error_handling.h defines several macros to help make error handling as simple and uniform as possible.

Error Propagation Macros

In a language with exception handling as a feature, error propagation requires no explicit code, it is only if you want to
prevent an error from propagating that you use a try/catch block. On the other hand, in C all error propagation must
be done explicitly.

We define macros to help make error propagation look as simple and uniform as possible. They can only be used
in a function with a finally: label which should handle resource cleanup for both the success branch and all the
failing branches (see structure of functions section below). When compiled with DEBUG_F, these commands will write
a message to console.error reporting the line, function, and file where the error occurred.

• FAIL() – unconditionally goto finally;.

• FAIL_IF_NULL(ptr) – goto finally; if ptr == NULL. This should be used with any function that returns
a pointer and follows the standard Python calling convention.

• FAIL_IF_MINUS_ONE(num) – goto finally; if num == -1. This should be used with any function that
returns a number and follows the standard Python calling convention.

• FAIL_IF_NONZERO(num) – goto finally; if num != 0. Can be used with functions that return any nonzero
error code on failure.

• FAIL_IF_ERR_OCCURRED() – goto finally; if the Python error indicator is set (in other words if
PyErr_Occurred()).

• FAIL_IF_ERR_MATCHES(python_err_type) – goto finally; if PyErr_ExceptionMatches(python_err_type),
for example FAIL_IF_ERR_MATCHES(PyExc_AttributeError);

3.2. Development 165

Pyodide, Release 0.26.0.dev0

JavaScript to CPython calling convention adaptors

If we call a JavaScript function from C and that JavaScript function throws an error, it is impossible to catch
it in C. We define two EM_JS adaptors to convert from the JavaScript calling convention to the CPython calling
convention. The point of this is to ensure that errors that occur in EM_JS functions can be handled in C code
using the FAIL_*`` macros. When compiled with DEBUG_F, when a JavaScript error is thrown a
message will also be written to console.error`. The wrappers do roughly the following:

try {
// body of function here

} catch (e) {
// wrap e in a Python exception and set the Python error indicator
// return error code

}

There are two variants: EM_JS_NUM returns -1 as the error code, EM_JS_REF returns NULL == 0 as the error code. A
couple of simple examples: Use EM_JS_REF when return value is a JsRef:

EM_JS_REF(JsRef, hiwire_call, (JsRef idfunc, JsRef idargs), {
let jsfunc = Hiwire.get_value(idfunc);
let jsargs = Hiwire.get_value(idargs);
return Hiwire.new_value(jsfunc(... jsargs));

});

Use EM_JS_REF when return value is a PyObject:

EM_JS_REF(PyObject*, __js2python, (JsRef id), {
// body here

});

If the function returns void, use EM_JS_NUM with return type errcode. errcode is a typedef for int. EM_JS_NUM
will automatically return -1 if an error occurs and 0 if not:

EM_JS_NUM(errcode, hiwire_set_member_int, (JsRef idobj, int idx, JsRef idval), {
Hiwire.get_value(idobj)[idx] = Hiwire.get_value(idval);

});

If the function returns int or bool use EM_JS_NUM:

EM_JS_NUM(int, hiwire_get_length, (JsRef idobj), {
return Hiwire.get_value(idobj).length;

});

These wrappers enable the following sort of code:

try:
jsfunc()

except JsException:
print("Caught an exception thrown in JavaScript!")

166 Chapter 3. Table of contents

Pyodide, Release 0.26.0.dev0

Structure of functions

In C it takes special care to correctly and cleanly handle both reference counting and exception propagation. In Python
(or other higher level languages), all references are released in an implicit finally block at the end of the function.
Implicitly, it is as if you wrote:

def f():
try: # implicit
a = do_something()
b = do_something_else()
c = a + b
return some_func(c)

finally:
implicit, free references both on successful exit and on exception
decref(a)
decref(b)
decref(c)

Freeing all references at the end of the function allows us to separate reference counting boilerplate from the “actual
logic” of the function definition. When a function does correct error propagation, there will be many different execution
paths, roughly linearly many in the length of the function. For example, the above pseudocode could exit in five different
ways: do_something could raise an exception, do_something_else could raise an exception, a + b could raise an
exception, some_func could raise an exception, or the function could return successfully. (Even a Python function like
def f(a,b,c,d): return (a + b) * c - d has four execution paths.) The point of the try/finally block is
that we know the resources are freed correctly without checking once for each execution path.

To do this, we divide any function that produces more than a couple of owned PyObject*s or JsRefs into several
“segments”. The more owned references there are in a function and the longer it is, the more important it becomes
to follow this style carefully. By being as consistent as possible, we reduce the burden on people reading the code to
double-check that you are not leaking memory or errors. In short functions it is fine to do something ad hoc.

1. The guard block. The first block of a function does sanity checks on the inputs and argument parsing, but only
to the extent possible without creating any owned references. If you check more complicated invariants on the
inputs in a way that requires creating owned references, this logic belongs in the body block.

Here’s an example of a METH_VARARGS function:

PyObject*
JsImport_CreateModule(PyObject* self, PyObject* args)
{
// Guard
PyObject* name;
PyObject* jsproxy;
// PyArg_UnpackTuple uses an unusual calling convention:
// It returns `false` on failure...
if (!PyArg_UnpackTuple(args, "create_module", 2, 2, &spec, &jsproxy)) {
return NULL;

}
if (!JsProxy_Check(jsproxy)) {

PyErr_SetString(PyExc_TypeError, "package is not an instance of jsproxy");
return NULL;

}

2. Forward declaration of owned references. This starts by declaring a success flag bool success = false. This
will be used in the finally block to decide whether the finally block was entered after a successful execution or
after an error. Then declare every reference counted variable that we will create during execution of the function.

3.2. Development 167

Pyodide, Release 0.26.0.dev0

Finally, declare the variable that we are planning to return. Typically, this will be called result, but in this case
the function is named CreateModule so we name the return variable module.

bool success = false;
// Note: these are all the objects that we will own. If a function returns
// a borrow, we XINCREF the result so that we can CLEAR it in the finally block.
// Reference counting is hard, so it's good to be as explicit and consistent
// as possible!
PyObject* sys_modules = NULL;
PyObject* importlib_machinery = NULL;
PyObject* ModuleSpec = NULL;
PyObject* spec = NULL;
PyObject* __dir__ = NULL;
PyObject* module_dict = NULL;
// result
PyObject* module = NULL;

3. The body of the function. The vast majority of API calls can return error codes. You MUST check every
fallible API for an error. Also, as you are writing the code, you should look up every Python API you use that
returns a reference to determine whether it returns a borrowed reference or a new one. If it returns a borrowed
reference, immediately Py_XINCREF() the result to convert it into an owned reference (before FAIL_IF_NULL,
to be consistent with the case where you use custom error handling).

name = PyUnicode_FromString(name_utf8);
FAIL_IF_NULL(name);
sys_modules = PyImport_GetModuleDict(); // returns borrow
Py_XINCREF(sys_modules);
FAIL_IF_NULL(sys_modules);
module = PyDict_GetItemWithError(sys_modules, name); // returns borrow
Py_XINCREF(module);
FAIL_IF_NULL(module);
if(module && !JsImport_Check(module)){
PyErr_Format(PyExc_KeyError,
"Cannot mount with name '%s': there is an existing module by this name that was␣

→˓not mounted with 'pyodide.mountPackage'."
, name

);
FAIL();

}
// ... [SNIP]

4. The finally block. Here we will clear all the variables we declared at the top in exactly the same order. Do not
clear the arguments! They are borrowed. According to the standard Python function calling convention, they are
the responsibility of the calling code.

success = true;
finally:
Py_CLEAR(sys_modules);
Py_CLEAR(importlib_machinery);
Py_CLEAR(ModuleSpec);
Py_CLEAR(spec);
Py_CLEAR(__dir__);
Py_CLEAR(module_dict);
if(!success){

(continues on next page)

168 Chapter 3. Table of contents

Pyodide, Release 0.26.0.dev0

(continued from previous page)

Py_CLEAR(result);
}
return result;

}

One case where you do need to Py_CLEAR a variable in the body of a function is if that variable is allocated in a loop:

// refcounted variable declarations
PyObject* pyentry = NULL;
// ... other stuff
Py_ssize_t n = PySequence_Length(pylist);
for (Py_ssize_t i = 0; i < n; i++) {
pyentry = PySequence_GetItem(pydir, i);
FAIL_IF_MINUS_ONE(do_something(pyentry));
Py_CLEAR(pyentry); // important to use Py_CLEAR and not Py_decref.

}

success = true
finally:
// have to clear pyentry at end too in case do_something failed in the loop body
Py_CLEAR(pyentry);

Testing

Any nonstatic C function called some_name defined not using EM_JS will be exposed as pyodide._module.
_some_name, and this can be used in tests to good effect. If the arguments / return value are not just numbers and
booleans, it may take some effort to set up the function call.

If you want to test an EM_JS function, consider moving the body of the function to an API defined on Module. You
should still wrap the function with EM_JS_REF or EM_JS_NUM in order to get a function with the CPython calling
convention.

Maintainer information

Making a release

For branch organization we use a variation of the GitHub Flow with the latest release branch named stable (due to
ReadTheDocs constraints).

Preparation for making a major release

Generally we make a tracking issue with a title like “0.25.0 release planning”.

Follow the steps in Updating packages.

Read the changelog and tidy it up by adding subsections and proof reading it.

Generate the list of contributors for the release at the end of the changelog entry with

git shortlog -s LAST_TAG.. | cut -f2- | grep -v '\[bot\]' | sort --ignore-case | tr '\n'
→˓';' | sed 's/;/, /g;s/, $//' | fold -s

3.2. Development 169

https://guides.github.com/introduction/flow/

Pyodide, Release 0.26.0.dev0

where LAST_TAG is the tag for the last release.

Make a pull request with these changes titled “Rearrange changelog for 0.25.0 release” and merge it.

Preparation for making a minor release

Make a branch called backports-for-v.vv.v:

git checkout stable
git pull upstream
git checkout -b backports-for-0.23.1

Locate the commits you want to backport in the main branch and cherry pick them:

git cherry-pick <commit-hash>

Make a pull request from backports-for-0.23.1 targeting the stable branch. If you’re using the github cli this can
be done with:

gh pr create -w -B stable

In the pull request description add a task:

- [] Merge don't squash

This pull request is a good place to @mention various people to ask if they have opinions about what should be back-
ported.

Add an extra commit organizing the changelog into sections and editing changelog messages. Generate the list of
contributors for the release at the end of the changelog entry with

git shortlog -s LAST_TAG.. | cut -f2- | grep -v '\[bot\]' | sort --ignore-case | tr '\n'
→˓';' | sed 's/;/, /g;s/, $//' | fold -s

where LAST_TAG is the tag for the last release. Make a branch from main called changelog-for-v.vv.v and apply
the same changelog rearrangements there.

Merge changelog-for-v.vv.v and backports-for-v.vv.v and then follow the relevant steps from Release In-
structions.

Preparation for making an alpha release

Name the first alpha release x.x.xa1 and in subsequent alphas increment the final number. No prepration is necessary.
Don’t update anything in the changelog. Follow the relevant steps from Release Instructions.

170 Chapter 3. Table of contents

Pyodide, Release 0.26.0.dev0

Release Instructions

1. From the root directory of the repository run

./tools/bump_version.py --new-version <new_version>
./tools/bump_version.py --new_version <new_version> --dry-run

and check that the diff is correct with git diff. Try using ripgrep to make sure there are no extra old versions
lying around e.g., rg -F "0.18", rg -F dev0, rg -F dev.0.

2. (Skip for alpha release.) Add a heading to the changelog indicating version and release date

3. Make a PR with the updates from steps 1 and 2. Merge the PR.

4. (Major release only.) Rename the stable branch to a release branch for the previous major version. For instance
if last release was, 0.20.0, the corresponding release branch would be 0.20.X:

git fetch upstream stable:stable
git branch 0.20.X stable
git push -u upstream 0.20.X

5. Create a tag X.Y.Z (without leading v) and push it to upstream,

git checkout main
git pull upstream
git tag X.Y.Z
git push upstream X.Y.Z

Wait for the CI to pass and create the release on GitHub.

6. (Major release only). Create a new stable branch from this tag,

git checkout main
git checkout -B stable
git push upstream stable --force

7. (Major or alpha but not minor release.) Set the version number back to the development version. If you just
released 0.22.0, set the version to 0.23.0.dev0. If you just released 0.22.0a1 then you’ll set the version to
0.22.0.dev0. Make a new commit from this and push it to upstream.

git checkout main
./tools/bump_version.py --new-version 0.23.0.dev0
git add -u
git commit -m "0.23.0.dev0"
git push upstream main

3.2. Development 171

Pyodide, Release 0.26.0.dev0

Fixing documentation for a released version

Cherry pick the corresponding documentation commits to the stable branch. Use git commit --amend to add
[skip ci] to the commit message.

Updating the Docker image

Anyone with an account on hub.docker.com can follow the following steps:

1. Make whatever changes are needed to the Dockerfile.

2. Build the docker image with docker build . in the Pyodide root directory. If the build succeeds, docker will
give you a hash for the built image.

3. Use python ./tools/docker_image_tag.py to find out what the new image tag should be. Tag the image
with:

docker image tag <image-hash> <your-docker-username>/pyodide-env:<image-tag>

4. Push the image with:

docker image push <your-docker-username>/pyodide-env:<image-tag>

5. Replace the image in .circleci/config.yml with your newly created image. Open a pull request with your
changes to Dockerfile and .circleci/config.yml.

6. When the tests pass and the pull request is approved, a maintainer must copy the new image into the pyodide
dockerhub account.

7. Then replace the image tag in .circleci/config.yml, .devcontainer/devcontainer.json, and
run_docker with the new image under the pyodide dockerhub account.

It’s also possible to update the docker image by pushing your changes to the Dockerfile
to a branch in the pyodide/pyodide repo (not on a fork) and clicking Run workflow on
https://github.com/pyodide/pyodide/actions/workflows/docker_image.yml.

Updating packages

Before updating the Python version and before making a major Pyodide release, we try to update all packages that are
not too much trouble. Run

make -C packages update-all

to update all packages and make a pull request with these changes. There will be build/test failures, revert the packages
that fail the build or tests and make a note to update them independently.

172 Chapter 3. Table of contents

Pyodide, Release 0.26.0.dev0

Upgrading pyodide to a new version of CPython

Prerequisites

The desired version of CPython must be available at:

1. The specific release section of https://www.python.org/downloads

2. https://hub.docker.com/_/python

3. https://github.com/actions/python-versions/releases

If doing a major version update, save time by Updating packages first.

Steps

1. Follow the steps in “Updating the Docker image” to create a docker image for the new Python version.

2. Make sure you are in a Python virtual environment with the new version of Python and with requirements.txt
installed. (It is also possible to work in the docker image as an alternative.)

3. Update the Python version in Makefile.envs

4. Update the Python version in the following locations:

• .github/workflows/main.yml

• docs/conf.py

• docs/development/contributing.md

• docs/development/building-and-testing-packages.md

• environment.yml

• .pre-commit-config.yaml

• pyodide-build/pyodide_build/tools/pyo3_config.ini (two places)

• pyproject.toml

(TODO: make this list shorter.)

5. Rebase the patches:

• Clone cpython and cd into it. Checkout the Python version you are upgrading from. For instance, if the old
version is 3.11.3, use git checkout v3.11.3 (Python tags have a leading v.) Run

git am ~/path/to/pyodide/cpython/patches/*

• Rebase the patches onto the new version of Python. For instance if updating from Python v3.11.3 to Python
3.12.1:

git rebase v3.11.3 --onto v3.12.1

• Resolve conflicts / drop patches that have been upstreamed. If you have conflicts, make sure you are using
diff3:

git config --global merge.conflictstyle diff3

• Generate the new patches:

3.2. Development 173

Pyodide, Release 0.26.0.dev0

rm ~/path/to/pyodide/cpython/patches/*
git format-patch v3.12.1 -o ~/path/to/pyodide/cpython/patches/

6. Try to build Python with make -C cpython. Fix any build errors. If you modify the Python source in tree after
a failed build it may be useful to run make rebuild.

7. Try to finish the build with a top level make. Fix compile errors in src/core and any link errors.
It may be useful to apply upgrade_pythoncapi.py --no-compat to the C extension in src/code.
https://github.com/python/pythoncapi-compat/blob/main/upgrade_pythoncapi.py

The file most tightly coupled to the CPython version is src/core/stack_switching/pystate.
c. Consult the following greenlet file to figure out how to fix it: https://github.com/python-
greenlet/greenlet/blob/master/src/greenlet/TPythonState.cpp

8. In the virtual environment with the new Python version, run

python src/tests/make_test_list.py

Then run the core tests pytest src/tests/test_core_python.py and either fix the failures or update src/
tests/python_tests.yaml to skip or xfail them.

9. Try to build packages with:

pyodide build-recipes '*'

Disable packages until the build succeeds. Then fix the build failures. In many cases, this just requires updating
to the most recent version of the package. If you have trouble, try searching on the package’s issue tracker for
“python 3.12” (or whatever the new version is). It’s best to create separate PRs for tricky package upgrades.

10. Fix failing package tests.

Old major Python upgrades

version pr
3.12 #4435
3.11 #3252
3.10 #2225
3.9 #1637
3.8 #712
3.7 #77

3.2.5 Testing and benchmarking

Testing

Running the Python test suite

1. Install the following dependencies into the default Python installation:

pip install pytest-pyodide pytest-httpserver

pytest-pyodide is a pytest plugin for testing Pyodide and third-party applications that use Pyodide.

174 Chapter 3. Table of contents

https://github.com/pyodide/pyodide/pull/4435
https://github.com/pyodide/pyodide/pull/3252
https://github.com/pyodide/pyodide/pull/2225
https://github.com/pyodide/pyodide/pull/1637
https://github.com/pyodide/pyodide/pull/712
https://github.com/pyodide/pyodide/pull/77

Pyodide, Release 0.26.0.dev0

See: pytest-pyodide for more information.

2. Install geckodriver or chromedriver and check that they are in your PATH.

3. To run the test suite, run pytest from the root directory of Pyodide:

pytest

There are 3 test locations that are collected by pytest,

• src/tests/: general Pyodide tests and tests running the CPython test suite

• pyodide-build/pyodide_build/tests/: tests related to Pyodide build system (do not require selenium or
playwright to run)

• packages/*/test_*: package specific tests.

You can run the tests from a specific file with:

pytest path/to/test/file.py

Some browsers sometimes produce informative errors than others so if you are getting confusing errors it is worth
rerunning the test on each browser. You can use --runtime commandline option to specify the browser runtime.

pytest --runtime firefox
pytest --runtime chrome
pytest --runtime node

Custom test marks

We support custom test marks:

@pytest.mark.skip_refcount_check and pytest.mark.skip_pyproxy_check disable respectively the check
for JavaScript references and the check for PyProxies. If a test creates JavaScript references or PyProxies and does not
clean them up, by default the tests will fail. If a test is known to leak objects, it is possible to disable these checks with
these markers.

Running the JavaScript test suite

To run tests on the JavaScript Pyodide package using Mocha, run the following commands,

cd src/js
npm test

To check TypeScript type definitions run,

npx tsd

3.2. Development 175

https://github.com/pyodide/pytest-pyodide
https://github.com/mozilla/geckodriver/releases
https://sites.google.com/a/chromium.org/chromedriver/downloads

Pyodide, Release 0.26.0.dev0

Manual interactive testing

To run tests manually:

1. Build Pyodide, perhaps in the docker image

2. From outside of the docker image, cd into the dist directory and run python -m http.server.

3. Once the webserver is running, simple interactive testing can be run by visiting the URL: http://
localhost:<PORT>/console.html. It’s recommended to use pyodide.runPython in the browser console
rather than using the repl.

Benchmarking

To run common benchmarks to understand Pyodide’s performance, begin by installing the same prerequisites as for
testing. Then run:

PYODIDE_PACKAGES="numpy,matplotlib" make benchmark

Linting

We lint with pre-commit.

Python is linted with ruff, black and mypy. JavaScript, markdown, yaml, and html are linted with prettier. C is
linted with clang-format.

To lint the code, run:

pre-commit run -a

You can have the linter automatically run whenever you commit by running

pip install pre-commit
pre-commit install

and this can later be disabled with

pre-commit uninstall

If you don’t lint your code, certain lint errors will be fixed automatically by pre-commit.ci which will push fixes to
your branch. If you want to push more commits, you will either have to pull in the remote changes or force push.

3.2.6 Debugging tips

See Emscripten’s page about debugging which has extensive info about the various debugging options available. The
Wasm Binary Toolkit is super helpful for analyzing .wasm, .so, .a, and .o files.

Also whenever you can reproduce a bug in chromium make sure to use a chromium-based browser (e.g., chrome) for
debugging. They are better at it.

176 Chapter 3. Table of contents

https://emscripten.org/docs/porting/Debugging.html
https://github.com/WebAssembly/wabt

Pyodide, Release 0.26.0.dev0

Run prettier on pyodide.asm.js

Before doing any debugger I strongly recommend running npx prettier -w pyodide.asm.js. This makes every-
thing much easier.

Linker error: function signature mismatch

You may get linker errors as follows:

wasm-ld: error: function signature mismatch: some_func
>>> defined as (i32, i32) -> i32 in some_static_lib.a(a.o)
>>> defined as (i32) -> i32 in b.o

This is especially common in Scipy. Oftentimes it isn’t too hard to figure out what is going wrong because it told you
the both the symbol name (some_func) and the object files involved (this is much easier than the runtime version of
this error!). If you can’t tell what is going on from looking at the source files, it’s time to pull out wasm-objdump.
In this case a.o is part of some_static_lib.a so you first need to get it out with ar -x some_static_lib.a
a.o. Now we can check if a.o imports or defines some_func. To check for imports, use wasm-objdump a.o -j
Import -x | grep some_func. If a.o is importing some_func you should see a line like: - func[0] sig=1
<env.some_func> <- env.some_func in the output.

If not, you will see nothing or things like some_func2. To check if a.o defines some_func (this is a bit redun-
dant because you can conclude whether or not does from whether it imports it) we can use: wasm-objdump a.o -j
Function -x | grep some_func, if a.o defines some_func you will see something like: - func[0] sig=0
<some_func>.

Now the question is what these signatures mean (though we already know this from the linker error). To find out what
signature 0 is, you can use wasm-objdump a.o -j Type -x | grep "type\[0\]".

Using this, we can verify that a.o imports some_func with signature (i32, i32) -> i32 but b.o exports it with
signature (i32) -> i32, hence the linker error.

This process works in basically the same way for already-linked .so and .wasm files, which can help if you get the
load-time version of this linker error.

Misencoded Wasm

On a very rare occasion you may run into a misencoded object file. This can cause different tools to crash, wasm-ld
may panic, etc. wasm-objdump will just generate a useless error message. In this case, I recommend wasm-objdump
-s --debug 2>&1 | grep -i error -C 20 (or pipe to less), which will result in more diagnostic information.
Sometimes the crash happens quite a lot later than the actual error, look for suspiciously large constants, these are often
the first sign of something gone haywire.

After this, you can get out a hex editor and consult the WebAssembly binary specification Cross reference against the
hex addresses appearing in wasm-objdump --debug. With enough diligence you can locate the problem.

3.2. Development 177

https://webassembly.github.io/spec/core/binary/index.html

Pyodide, Release 0.26.0.dev0

Debugging RuntimeError: function signature mismatch

First recompile with -g2. -g2 keeps symbols but won’t try to use C source maps which mostly make our life harder
(though it may be helpful to link one copy with -g2 and one with -g3 and run them at the same time cf Using C source
maps).

The browser console will show something like the following. Click on the innermost stack trace:

Clicking the offset will (hopefully) take you to the corresponding wasm instruction, which should be a call_indirect.
If the offset is too large (somewhere between 0x0200000 and 0x0300000) you will instead see ;; text is
truncated due to size, see Dealing with ;; text is truncated due to size. In this example we see the following:

So we think we are calling a function pointer with signature (param i32 i32) (result i32) meaning that it takes
two i32 inputs and returns one i32 output. Set a breakpoint by clicking on the address, then refresh the page and
run the reproduction again. Sometimes these are on really hot code paths (as in the present example) so you probably
only want to set the breakpoint once Pyodide is finished loading. If your reproduction passes through the breakpoint
multiple times before crashing you can do the usual chore of counting how many times you have to press “Resume”
before the crash. Suppose you’ve done all this, and we’ve got the vm stopped at the bad instruction just before crashing:

178 Chapter 3. Table of contents

Pyodide, Release 0.26.0.dev0

The bottom value on the stack is the function pointer. In this case it’s the fourth item on the stack, so you can type the
following into the console:

> pyodide._module.wasmTable.get(stack[4].value) // stack[4].value === 13109
< ƒ $one() { [native code] }

So the bad function pointer’s symbol is one! Now clicking on $one brings you to the source for it:

and we see the function pointer has signature (param $var0 i32) (result i32), meaning it takes one i32 input
and returns one i32 output. Note that if the function had void return type it might look like (param $var0 i32
$var1 i32) (with no result). Confusion between i32 and void return type is the single most common cause of
this error.

Now we basically know the cause of the trouble. You can look up cfunction_call in the CPython source code with
the help of ripgrep and locate the line that generates this call, and look up one in the appropriate source and find the
signature. Another approach to locate the call site would be to recompile with -g3 and use source maps Using C source
maps to locate the problematic source code. With the same process of reproduce crash ==> click innermost stack frame
==> see source file and line where the error occurs. In this case we see that the crash is on the line:

result = _PyCFunction_TrampolineCall(meth, self, args);

in the file /src/cpython/build/Python-3.11.0dev0/Objects/methodobject.c. Unfortunately, source maps
are useless for the harder problem of finding the callee because compiling with -g3 increases the number of function
pointers so the function pointer we are calling is in a different spot. I know of no way to determine the bad function
pointer when compiling with -g3.

3.2. Development 179

Pyodide, Release 0.26.0.dev0

Sometimes (particularly with Scipy/OpenBLAS/libf2c) the issue will be a mismatch between (param i32 i32 i32
i32 i32 i32 i32 i32 i32 i32 i32 i32 i32 i32) (result i32) and (param i32 i32 i32 i32 i32
i32 i32 i32 i32 i32 i32 i32 i32 i32 i32) (result i32)

(14 vs 15 parameters) which might be a little hard to discern. I copy the signature into the Javascript console and run
"i32 ... i32".split(" ").length in this case.

Dealing with ;; text is truncated due to size

If you are debugging and run into the dreaded ;; text is truncated due to size error message, the solution
is to compile a modified version of Chrome devtools with a larger wasm size cap. Surprisingly, this is not actually all
that hard.

These instructions are adapted from here: https://www.diverto.hr/en/blog/2020-08-15-WebAssembly-limit/

In short,

git clone https://chromium.googlesource.com/chromium/tools/depot_tools.git
./fetch devtools-frontend
cd devtools-frontend

Apply the following change:

--- a/front_end/entrypoints/wasmparser_worker/WasmParserWorker.ts
+++ b/front_end/entrypoints/wasmparser_worker/WasmParserWorker.ts
@@ -55,7 +55,7 @@ export function dissambleWASM(

const lines = [];
const offsets = [];
const functionBodyOffsets = [];

- const MAX_LINES = 1000 * 1000;
+ const MAX_LINES = 12 * 1000 * 1000;

let chunkSize: number = 128 * 1024;
let buffer: Uint8Array = new Uint8Array(chunkSize);
let pendingSize = 0;

Then build with:

gn gen out/Default
autoninja -C out/Default

then

cd out/Default/resources/inspector_overlay/
python http.server <some_port>

and then you can start a version of chrome using the modified devtools:

chrome --custom-devtools-frontend=http://localhost:<some_port>/

180 Chapter 3. Table of contents

Pyodide, Release 0.26.0.dev0

Using C source maps

Chromium has support for DWARF info which can be very helpful for debugging in certain circumstances.

I haven’t used this very much because it is often not very beneficial. The biggest issue is that I have found no way to
toggle between viewing the C source and the WebAssembly. In particular, if source maps are available, the debugger
gives no way to view the current line in the wasm. What’s worse is that even if it fails to find the source map, it won’t
fall back to displaying the source map. To prevent this, relink the code with -g2.

Typically once I have isolated the interesting line of C code, I need to see what is going on at an instruction-level. This
limitation means that it is generally easier to work directly with instructions. One work around is to load a copy of Pyo-
dide with the source maps next to one without the source maps. This situation is rapidly improving both on Emscripten’s
side and on the browser side. To build Pyodide with DWARF, you should set DBGFLAGS="-g3 -gseparate-dwarf".

If you are building in the docker image, you will get error 404s when the browser tries to look up the source maps
because the path /src/cpython/... doesn’t exist. One dumb solution is sudo ln -s $(pwd) /src. It might not
be the best idea to link some random directory into root, if you manage to destroy your computer with this please don’t
blame me. In particular, if you later want to remove this link make sure not to remove /srv instead! The correct
solution is to use --source-map-base, but I can’t seem to get it to work.

3.3 Project

The Project section gives additional information about the project’s organization and latest releases.

3.3.1 What is Pyodide?

Pyodide is a Python distribution for the browser and Node.js based on WebAssembly/Emscripten.

Pyodide makes it possible to install and run Python packages in the browser with micropip. Any pure Python package
with a wheel available on PyPI is supported. Many packages with C extensions have also been ported for use with
Pyodide. These include many general-purpose packages such as regex, PyYAML, lxml and scientific Python packages
including NumPy, pandas, SciPy, Matplotlib, and scikit-learn.

Pyodide comes with a robust Javascript Python foreign function interface so that you can freely mix these two languages
in your code with minimal friction. This includes full support for error handling (throw an error in one language, catch
it in the other), async/await, and much more.

When used inside a browser, Python has full access to the Web APIs.

History

Pyodide was created in 2018 by Michael Droettboom at Mozilla as part of the Iodide project. Iodide is an experimental
web-based notebook environment for literate scientific computing and communication.

3.3. Project 181

https://developer.chrome.com/blog/wasm-debugging-2020/
https://emscripten.org/
https://pyodide.org/en/stable/usage/api/micropip-api.html
https://github.com/mdboom
https://github.com/iodide-project/iodide

Pyodide, Release 0.26.0.dev0

Contributing

See the contributing guide for tips on filing issues, making changes, and submitting pull requests. Pyodide is an
independent and community-driven open-source project. The decision-making process is outlined in Governance and
Decision-making.

Citing

If you use Pyodide for a scientific publication, we would appreciate citations. Please find us on Zenodo and use the
citation for the version you are using. You can replace the full author list from there with “The Pyodide development
team” like in the example below:

@software{pyodide_2021,
author = {The Pyodide development team},
title = {pyodide/pyodide},
month = aug,
year = 2021,
publisher = {Zenodo},
version = {0.25.0},
doi = {10.5281/zenodo.5156931},
url = {https://doi.org/10.5281/zenodo.5156931}

}

Communication

• Blog: blog.pyodide.org

• Mailing list: mail.python.org/mailman3/lists/pyodide.python.org/

• Gitter: gitter.im/pyodide/community

• Twitter: twitter.com/pyodide

• Stack Overflow: stackoverflow.com/questions/tagged/pyodide

Donations

We accept donations to the Pyodide project at opencollective.com/pyodide. All donations are processed by the Open
Source Collective – a nonprofit organization that acts as our fiscal host.

Funds will be mostly spent to organize in-person code sprints and to cover infrastructure costs for distributing packages
built with Pyodide.

License

Pyodide uses the Mozilla Public License Version 2.0.

182 Chapter 3. Table of contents

https://zenodo.org/record/5156931
https://blog.pyodide.org/
https://mail.python.org/mailman3/lists/pyodide.python.org/
https://gitter.im/pyodide/community
https://twitter.com/pyodide
https://stackoverflow.com/questions/tagged/pyodide
https://opencollective.com/pyodide
https://www.oscollective.org/
https://www.oscollective.org/
https://choosealicense.com/licenses/mpl-2.0/

Pyodide, Release 0.26.0.dev0

Infrastructure support

We would like to thank,

• Mozilla and CircleCl for Continuous Integration resources

• JsDelivr for providing a CDN for Pyodide packages

• ReadTheDocs for hosting the documentation.

3.3.2 Roadmap

This document lists general directions that core developers are interested to see developed in Pyodide. The fact that an
item is listed here is in no way a promise that it will happen, as resources are limited. Rather, it is an indication that
help is welcomed on this topic.

Improve documentation

Our API documentation is fairly detailed, but they need more introductory information like tutorials. We also want to
add more information to the FAQ and improve the organization. It would also be good to find some way to include
interactive code pens in the documentation.

Reducing download sizes and initialization times

At present a first load of Pyodide requires a 6.4 MB download, and the environment initialization takes 4 to 5 seconds.
Subsequent page loads are faster since assets are cached in the browser. Both of these indicators can likely be improved,
by optimizing compilation parameters, minifying the Python standard library and packages, reducing the number of
exported symbols. To figure out where to devote the effort, we need a better profiling system for the load process.

See issue #646.

Improve performance of Python code in Pyodide

Across benchmarks Pyodide is currently around 3x to 5x slower than native Python.

At the same time, C code compiled to WebAssembly typically runs between near native speed and 2x to 2.5x times
slower (Jangda et al. 2019 PDF). It is therefore very likely that the performance of Python code in Pyodide can be
improved with some focused effort.

In addition, scientific Python code would benefit from packaging a high performance BLAS library such as BLIS.

See issue #1120.

Find a better way to compile Fortran

Currently, we use f2c to cross compile Fortran to C. This does not work very well because f2c only fully supports
Fortran 77 code. LAPACK has used more modern Fortran features since 2008 and Scipy has adopted more recent
Fortran as well. f2c still successfully generates code for all but 6 functions in Scipy + LAPACK, but much of the
generated code is slightly wrong and requires extensive patching. There are still a large number of fatal errors due to
call signature incompatibilities.

If we could use an LLVM-based Fortran compiler as a part of the Emscripten toolchain, most of these problems would
be solved. There are several promising projects heading in that direction including flang and lfortran.

See scipy/scipy#15290.

3.3. Project 183

https://www.mozilla.org/en-US/
https://circleci.com/
https://www.jsdelivr.com/
https://readthedocs.org/
https://github.com/pyodide/pyodide/issues/646
https://github.com/pyodide/pyodide/tree/main/benchmark
https://www.usenix.org/system/files/atc19-jangda.pdf
https://github.com/pyodide/pyodide/issues/1120
https://github.com/scipy/scipy/issues/15290

Pyodide, Release 0.26.0.dev0

Better project sustainability

Some of the challenges that Pyodide faces, such as maintaining a collection of build recipes, dependency resolution
from PyPI, etc are already solved in either Python or JavaScript ecosystems. We should therefore strive to better reuse
existing tooling, and seeking synergies with existing initiatives in this space, such as conda-forge.

See issue #795.

Improve support for WebWorkers

WebWorkers are necessary in order to run computational tasks in the browser without hanging the user interface.
Currently, Pyodide can run in a WebWorker, however the user experience and reliability can be improved.

See issue #1504.

Synchronous IO

The majority of existing I/O APIs are synchronous. Unless we can support synchronous IO, much of the existing
Python ecosystem cannot be ported. There are several different approaches to this, we would like to support at least
one method.

See issue #1503.

Write http.client in terms of Web APIs

Python packages make an extensive use of packages such as requests to synchronously fetch data. We currently
can’t use such packages since sockets are not available in Pyodide. We could however try to re-implement some stdlib
libraries with Web APIs, potentially making this possible.

Because http.client is a synchronous API, we first need support for synchronous IO.

See issue #140.

3.3.3 Code of Conduct

Conduct

We are committed to providing a friendly, safe and welcoming environment for all, regardless of level of experience,
gender identity and expression, sexual orientation, disability, personal appearance, body size, race, ethnicity, age, reli-
gion, nationality, or other similar characteristic.

• Please be kind and courteous. There’s no need to be mean or rude.

• Please avoid using usernames that are overtly sexual or otherwise might detract from a friendly, safe, and wel-
coming environment for all.

• Respect that people have differences of opinion and that every design or implementation choice carries trade-offs.
There is seldom a single right answer.

• We borrow the Recurse Center’s “social rules”: no feigning surprise, no well-actually’s, no backseat driving,
and no subtle -isms.

• Please keep unstructured critique to a minimum. If you have solid ideas you want to experiment with, make a
fork and see how it works. All feedback should be constructive in nature. If you need more detailed guidance
around giving feedback, consult Digital Ocean’s Code of Conduct

184 Chapter 3. Table of contents

https://github.com/pyodide/pyodide/issues/795
https://github.com/pyodide/pyodide/issues/1504
https://github.com/pyodide/pyodide/issues/1503
https://github.com/pyodide/pyodide/issues/140
https://www.recurse.com/manual#sub-sec-social-rules
https://github.com/digitalocean/engineering-code-of-conduct#giving-and-receiving-feedback

Pyodide, Release 0.26.0.dev0

• It is unacceptable to insult, demean, or harass anyone. We interpret the term “harassment” as defined in the
Citizen Code of Conduct; if you are not sure about what harassment entails, please read their definition. In
particular, we don’t tolerate behavior that excludes people in socially marginalized groups.

• Private harassment is also unacceptable. No matter who you are, please contact any of the Pyodide core team
members immediately if you are being harassed or made uncomfortable by a community member. Whether you
are a regular contributor or a newcomer, we care about making this community a safe place for you and we’ve
got your back.

• Likewise spamming, trolling, flaming, baiting or other attention-stealing behavior is not welcome.

Moderation

These are the policies for upholding our community’s standards of conduct. If you feel that a thread needs moderation,
please contact the Pyodide core team.

1. Remarks that violate the Pyodide standards of conduct are not allowed. This includes hateful, hurtful, oppressive,
or exclusionary remarks. (Cursing is allowed, but never targeting another community member, and never in a
hateful manner.)

2. Remarks that moderators find inappropriate are not allowed, even if they do not break a rule explicitly listed in
the code of conduct.

3. Moderators will first respond to such remarks with a warning.

4. If the warning is unheeded, the offending community member will be temporarily banned.

5. If the community member comes back and continues to make trouble, they will be permanently banned.

6. Moderators may choose at their discretion to un-ban the community member if they offer the offended party a
genuine apology.

7. If a moderator bans someone and you think it was unjustified, please take it up with that moderator, or with a
different moderator, in private. Complaints about bans in-channel are not allowed.

8. Moderators are held to a higher standard than other community members. If a moderator creates an inappropriate
situation, they should expect less leeway than others.

9. In the Pyodide community we strive to go the extra mile to look out for each other. Don’t just aim to be technically
unimpeachable, try to be your best self. In particular, avoid flirting with offensive or sensitive issues, particularly
if they’re off-topic; this all too often leads to unnecessary fights, hurt feelings, and damaged trust; worse, it can
drive people away from the community entirely.

10. If someone takes issue with something you said or did, resist the urge to be defensive. Just stop doing what it
was they complained about and apologize. Even if you feel you were misinterpreted or unfairly accused, chances
are good there was something you could have communicated better — remember that it’s your responsibility to
make your fellow Pyodide community members comfortable. Everyone wants to get along and we are all here
first and foremost because we want to talk about science and cool technology. You will find that people will be
eager to assume good intent and forgive as long as you earn their trust.

11. The enforcement policies listed above apply to all official Pyodide venues. If you wish to use this code of conduct
for your own project, consider making a copy with your own moderation policy so as to avoid confusion.

Adapted from the the Rust Code of Conduct, with further reference from Digital Ocean Code of Conduct, the Recurse
Center, the Citizen Code of Conduct, and the Contributor Covenant.

3.3. Project 185

https://github.com/stumpsyn/policies/blob/master/citizen_code_of_conduct.md#4-unacceptable-behavior
https://www.rust-lang.org/en-US/conduct.html
https://github.com/digitalocean/engineering-code-of-conduct#giving-and-receiving-feedback
https://www.recurse.com/code-of-conduct
https://www.recurse.com/code-of-conduct
http://citizencodeofconduct.org/
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

Pyodide, Release 0.26.0.dev0

3.3.4 Governance and Decision-making

The purpose of this document is to formalize the governance process used by the Pyodide project, to clarify how
decisions are made and how the various members of our community interact. This document establishes a decision-
making structure that takes into account feedback from all members of the community and strives to find consensus,
while avoiding deadlocks.

Anyone with an interest in the project can join the community, contribute to the project design and participate in the
decision making process. This document describes how to participate and earn merit in the Pyodide community.

Roles And Responsibilities

Contributors

Contributors are community members who contribute in concrete ways to the project. Anyone can become a contribu-
tor, and contributions can take many forms, for instance, answering user questions – not only code – as detailed in How
to Contribute.

Community members team

The community members team is composed of community members who have permission on Github to label and close
issues. Their work is crucial to improve the communication in the project.

After participating in Pyodide development with pull requests and reviews for a period of time, any contributor may
become a member of the team. The process for adding team members is modeled on the CPython project. Any core
developer is welcome to propose a Pyodide contributor to join the community members team. Other core developers
are then consulted: while it is expected that most acceptances will be unanimous, a two-thirds majority is enough.

Core developers

Core developers are community members who have shown that they are dedicated to the continued development of the
project through ongoing engagement with the community. They have shown they can be trusted to maintain Pyodide
with care. Being a core developer allows contributors to more easily carry on with their project related activities by
giving them direct access to the project’s repository and is represented as being a member of the core team on the
Pyodide GitHub organization. Core developers are expected to review code contributions, can merge approved pull
requests, can cast votes for and against merging a pull-request, and can make decisions about major changes to the API
(all contributors are welcome to participate in the discussion).

New core developers can be nominated by any existing core developers. Once they have been nominated, there will
be a vote by the current core developers. Voting on new core developers is one of the few activities that takes place
on the project’s private communication channels. While it is expected that most votes will be unanimous, a two-thirds
majority of the cast votes is enough. The vote needs to be open for at least one week.

Core developers that have not contributed to the project (commits or GitHub comments) in the past two years will be
asked if they want to become emeritus core developers and recant their commit and voting rights until they become
active again.

186 Chapter 3. Table of contents

https://devguide.python.org/triaging/#becoming-a-member-of-the-python-triage-team
https://github.com/orgs/Pyodide/teams/core/members

Pyodide, Release 0.26.0.dev0

Decision Making Process

Decisions about the future of the project are made through discussion with all members of the community. All non-
sensitive project management discussion takes place on the project contributors’ issue tracker and on Github discussion.
Occasionally, sensitive discussion occurs on a private communication channels.

Pyodide uses a “consensus seeking” process for making decisions. The group tries to find a resolution that has no open
objections among core developers. At any point during the discussion, any core-developer can call for a vote, which
will conclude two weeks from the call for the vote. This is what we hereafter may refer to as “the decision making
process”.

Decisions (in addition to adding core developers as above) are made according to the following rules:

• Maintenance changes, include for instance improving the wording in the documentation, updating CI or de-
pendencies. Core developers are expected to give “reasonable time” to others to give their opinion on the Pull
Request in case they’re not confident that others would agree. If no further review on the Pull Request is received
within this time, it can be merged. If a review is received, then the consensus rules from the following section
apply.

• Code changes in general, and especially those impacting user facing APIs, as well as more significant docu-
mentation changes, require review and approval by a core developer and no objections raised by any core devel-
oper (lazy consensus). This process happens on the pull-request page.

• Changes to the governance model use the same decision process outlined above.

3.3.5 Change Log

Unreleased

• Fix Pass through -E (command mode) arguments in CMake wrapper #4705.

• Fix Fix exception handling in dynamic linking of int64 functions #4698.

• Enhancement str(jsproxy) has been adjusted to not raise an error if jsproxy.toString is undefined. In-
stead, it will use Object.prototype.toString in this case. If jsproxy.toString is defined and throws or
is not defined but jsproxy[Symbol.toStringTag] is defined and throws, then str will still raise. #4574

• Enhancement Improved support for stack switching. #4532, #4547

• Upgraded Python to v3.12.1 #4431 #4435

• Enhancement ABI Break: Updated Emscripten to version 3.1.52 #4399

• BREAKING CHANGE pyodide-build entrypoint is removed in favor of pyodide. This entrypoint was dep-
recated since 0.22.0. #4368

• Enhancement Added apis to discard extra arguments when calling Python functions. #4392

• BREAKING CHANGE Pyodide will not fallback to node-fetch anymore when fetch is not available in the
Node.js < 18 environment. #4417

• Enhancement Updated pyimport to support pyimport("module.attribute"). #4395

• BREAKING CHANGE The --no-deps option to pyodide build-recipes has been replaced with a separate
subcommand pyodide build-recipes-no-deps. #4443

• Enhancement The build/post script now runs under the directory where the built wheel is unpacked. #4481

• Fix dup now works correctly in the Node filesystem. #4554

• Enhancement Fixed a memory leak when iterating over a PyProxy. #4546

3.3. Project 187

https://github.com/Pyodide/Pyodide/issues
https://github.com/Pyodide/Pyodide/discussions
https://github.com/pyodide/pyodide/pull/4705
https://github.com/pyodide/pyodide/pull/4698
https://github.com/pyodide/pyodide/pull/4574
https://github.com/pyodide/pyodide/pull/4532
https://github.com/pyodide/pyodide/pull/4547
https://github.com/pyodide/pyodide/pull/4431
https://github.com/pyodide/pyodide/pull/4435
https://github.com/pyodide/pyodide/pull/4399
https://github.com/pyodide/pyodide/pull/4368
https://github.com/pyodide/pyodide/pull/4392
https://github.com/pyodide/pyodide/pull/4417
https://github.com/pyodide/pyodide/pull/4395
https://github.com/pyodide/pyodide/pull/4443
https://github.com/pyodide/pyodide/pull/4481
https://github.com/pyodide/pyodide/pull/4554
https://github.com/pyodide/pyodide/pull/4546

Pyodide, Release 0.26.0.dev0

• Enhancement asyncio.sleep(0) now runs the next task a lot faster. #4590

• Fix pyodide.mountNativeFS will no longer silently overwrite an existing nonempty directory. Also it throws
much clearer error messages when it fails. #4559

• Enhancement Added a new API pyodide.mountNodeFS which mounts a host directory into the Pyodide file
system when running in node. #4561

• Enhancement When a dictionary is converted to JavaScript with toJs the result is now a LiteralMap. String
keys are accessible via direct property access unless they match a function on the Map prototype. #4576

• Fix toJs now works as expected on subclasses of dict. #4637

• Enhancement Added PyProxy.asJsonAdaptor method to adapt between Python JSON (lists and dicts) and
JavaScript JSON (Arrays and Objects). #4666

• BREAKING CHANGE The experimental callSyncifying method was renamed to callPromising. #4608

• Enhancement A new callWithOptions method was added to PyProxies of a callable. #4608

Packages

• New Packages: cysignals, ppl, pplpy #4407, flint, python-flint #4410, memory_allocator #4393,
primesieve, primecount, primecountpy #4477, pyxirr #4513, ipython, asttokens, executing,
prompt_toolkit, pure_eval, stack_data, traitlets, wcwidth #4452, altair #4580, cvxpy #4587,
clarabel #4587, matplotlib-inline #4626, pygame-ce #4602, libcst #4665, mmh3, pyiceberg #4648

• Upgraded contourpy to 1.2.1 #4680

• Upgraded sourmash to 4.8.8 #4683

Version 0.25.1

March 31, 2024

• Fix Fixed pyodide-build to work with pypa/build>=1.2. #4653

• Fix Fixed a bug that pyodide-build setting MESON env variable, which overwrites the binary path of meson. #4502

Version 0.25.0

January 18, 2024

General

• Enhancement ABI Break: Updated Emscripten to version 3.1.46 #4359

• BREAKING CHANGE Node.js < 18 is no longer officially supported. Older versions of Node.js might still
work, but they are not tested or guaranteed to work. #4269

• Enhancement Added experimental support for stack switching. #3957, #3964, #3987, #3990, #3210

188 Chapter 3. Table of contents

https://github.com/pyodide/pyodide/pull/4590
https://github.com/pyodide/pyodide/pull/4559
https://github.com/pyodide/pyodide/pull/4561
https://github.com/pyodide/pyodide/pull/4576
https://github.com/pyodide/pyodide/pull/4637
https://github.com/pyodide/pyodide/pull/4666
https://github.com/pyodide/pyodide/pull/4608
https://github.com/pyodide/pyodide/pull/4608
https://github.com/pyodide/pyodide/pull/4407
https://github.com/pyodide/pyodide/pull/4410
https://github.com/pyodide/pyodide/pull/4393
https://github.com/pyodide/pyodide/pull/4477
https://github.com/pyodide/pyodide/pull/4513
https://github.com/pyodide/pyodide/pull/4452
https://github.com/pyodide/pyodide/pull/4580
https://github.com/pyodide/pyodide/pull/4587
https://github.com/pyodide/pyodide/pull/4587
https://github.com/pyodide/pyodide/pull/4626
https://github.com/pyodide/pyodide/pull/4602
https://github.com/pyodide/pyodide/pull/4665
https://github.com/pyodide/pyodide/pull/4648
https://github.com/pyodide/pyodide/pull/4680
https://github.com/pyodide/pyodide/pull/4683
https://github.com/pyodide/pyodide/pull/4653
https://github.com/pyodide/pyodide/pull/4502
https://github.com/pyodide/pyodide/pull/4359
https://github.com/pyodide/pyodide/pull/4269
https://github.com/pyodide/pyodide/pull/3957
https://github.com/pyodide/pyodide/pull/3964
https://github.com/pyodide/pyodide/pull/3987
https://github.com/pyodide/pyodide/pull/3990
https://github.com/pyodide/pyodide/pull/3210

Pyodide, Release 0.26.0.dev0

JavaScript API

• Fix pyodide.setStdin now does not consider an empty string as EOF. #4327

• BREAKING CHANGE loadPyodide does not accept homedir option anymore, use env: {HOME: "/the/
home/directory"} instead. This have been deprecated since Pyodide 0.24. #4342

• Enhancement pyodide.loadPackage now returns an object with metadata about the loaded packages. #4306

• Fix Fixed default indexURL calculation in Node.js environment. #4288

Python API

• Enhancement The pyodide-py package on pypi now includes py.typed markers so mypy will use the types.
#4321

• Fix Fixed a bug that micropip would fail to install packages from pyodide-lock.json if the package’s name differs
from its normalized name. #4319

• Enhancement Added a no-op WebLoop.close method so that attempts to close the event loop will not raise an
exception. #4329

Python / JavaScript Foreign Function Interface

• Fix jsarray.pop now works correctly. It previously returned the wrong value and leaked memory. #4236

• BREAKING CHANGE PyProxy.toString now calls str instead of repr. For now you can opt into the old
behavior by passing pyproxyToStringRepr: true to loadPyodide, but this may be removed in the future.
#4247

• Fix when accessing a JsProxy attribute invokes a getter and the getter throws an error, that error is propagated
instead of being turned into an AttributeError. #4254

• Fix import type { PyProxy } from "pyodide/ffi" now works with the NodeNext typescript target.
#4256

• Fix Fixed a bug that occurs when using toJs with both dictConverter and defaultConverter arguments.
#4263

• Enhancement Added JsArray.remove and JsArray.insert methods. #4326

• BREAKING CHANGE Type exports of PyProxy subtypes have been moved from pyodide to pyodide/ffi
and many of them have changed names. #4342

• BREAKING CHANGE The methods for checking PyProxy capabilities (e.g., supportsHas, isCallable) are
now removed. Use e.g., instanceof pyodide.ffi.PyCallable instead. #4342

Pyodide CLI

• Enhancement pyodide config command now show additional config variables: rustflags,
cmake_toolchain_file, pyo3_config_file, rust_toolchain, cflags cxxflags, ldflags,
meson_cross_file. These variables can be used in out-of-tree build to set the same variables as in-tree build.
#4241

• Enhancement pyodide build command now accepts --config-setting (-C) option to pass flags to the build
backend, just like python -m build command. #4308

3.3. Project 189

https://github.com/pyodide/pyodide/pull/4327
https://github.com/pyodide/pyodide/pull/4342
https://github.com/pyodide/pyodide/pull/4306
https://github.com/pyodide/pyodide/pull/4288
https://github.com/pyodide/pyodide/pull/4321
https://github.com/pyodide/pyodide/pull/4319
https://github.com/pyodide/pyodide/pull/4329
https://github.com/pyodide/pyodide/pull/4236
https://github.com/pyodide/pyodide/pull/4247
https://github.com/pyodide/pyodide/pull/4254
https://github.com/pyodide/pyodide/pull/4256
https://github.com/pyodide/pyodide/pull/4263
https://github.com/pyodide/pyodide/pull/4326
https://github.com/pyodide/pyodide/pull/4342
https://github.com/pyodide/pyodide/pull/4342
https://github.com/pyodide/pyodide/pull/4241
https://github.com/pyodide/pyodide/pull/4308

Pyodide, Release 0.26.0.dev0

Load time & size optimizations

• Performance Do not use importlib.metadata when identifying installed packages, which reduces the time to
load Pyodide. #4147

Build system

• Fix Fixed Emscripten.cmake not vendored in pyodide-build since 0.24.0. #4223

• Fix pyodide-build now does not override CMAKE_CONFIG_FILE and PYO3_CONFIG_FILE env variables if pro-
vided by user. #4223

• Fix Fixed a bug that webpack messes up dynamic import of pyodide.asm.js. #4294

Packages

• New Packages: river #4197, sisl #4210, frozenlist #4231, zengl #4208, msgspec #4265, aiohttp
#4282, pysam #4268, requests, urllib3 #4332, nh3 #4387

• Upgraded zengl to 2.2.0 #4364

Version 0.24.1

September 25, 2023

• Fix Fixed LONG_BIT definition appears wrong for platform error happened in out-of-tree build.
#4136

• Fix Fixed an Emscripten bug that broke some matplotlib functionality. #4163

• Fix pyodide.checkInterrupt works when there is no interrupt buffer and the gil is not held. #4164

Packages

• Upgraded scipy to 1.11.2 #4156

• Upgraded sourmash to 4.8.4 #4154

• Upgraded scikit-learn to 1.3.1 #4161

• Upgraded micropip to 0.5.0 #4167

Version 0.24.0

September 13, 2023

190 Chapter 3. Table of contents

https://github.com/pyodide/pyodide/pull/4147
https://github.com/pyodide/pyodide/pull/4223
https://github.com/pyodide/pyodide/pull/4223
https://github.com/pyodide/pyodide/pull/4294
https://github.com/pyodide/pyodide/pull/4197
https://github.com/pyodide/pyodide/pull/4210
https://github.com/pyodide/pyodide/pull/4231
https://github.com/pyodide/pyodide/pull/4208
https://github.com/pyodide/pyodide/pull/4265
https://github.com/pyodide/pyodide/pull/4282
https://github.com/pyodide/pyodide/pull/4268
https://github.com/pyodide/pyodide/pull/4332
https://github.com/pyodide/pyodide/pull/4387
https://github.com/pyodide/pyodide/pull/4364
https://github.com/pyodide/pyodide/pull/4136
https://github.com/pyodide/pyodide/pull/4163
https://github.com/pyodide/pyodide/pull/4164
https://github.com/pyodide/pyodide/pull/4156
https://github.com/pyodide/pyodide/pull/4154
https://github.com/pyodide/pyodide/pull/4161
https://github.com/pyodide/pyodide/pull/4167

Pyodide, Release 0.26.0.dev0

General

• Update Pyodide now runs Python 3.11.3. #3741

• Enhancement ABI Break: Updated Emscripten to version 3.1.45 #3665, #3659, #3822, #3889, #3890, #3888,
#4055, #4056, #4073, #4094

JavaScript API

• Performance Added a packages optional argument to loadPyodide. Passing packages here saves time by
downloading them during the Pyodide bootstrap. #4100

• Enhancement runPython and runPythonAsync now accept a filename optional argument which is passed as
the filename argument to eval_code (resp. eval_code_async). Also, if a filename is passed to eval_code
which does not start with < and end with >, Pyodide now uses the linecache module to ensure that source lines
can appear in tracebacks. #3993

• Performance For performance reasons, don’t render extra information in PyProxy destroyed message by default.
By using pyodide.setDebug(true), you can opt into worse performance and better error messages. #4027

• Enhancement It is now possible to pass environment variables to loadPyodide via the env argument. homedir
is deprecated in favor of {env: {HOME: whatever_directory}}. #3870

• Enhancement The setStdin, setStdout and setStderr APIs have been improved with extra control and
better performance. #4035

Python API

• Enhancement Added headers property to pyodide.http.FetchResponse. #2078

• Enhancement Added FetchResponse.text() as a synonym to FetchResponse.string() for better com-
patibility with other requests APIs. #4052

• BREAKING CHANGE Changed the FetchResponse body getter methods to no longer throw an OSError
exception for 400 and above response status codes. Added FetchResponse.raise_for_status to raise an
OSError for error status codes. #3986 #4053

Python / JavaScript Foreign Function Interface

• Performance Improved performance of PyProxy creation. #4096

• Fix Fixed adding getters/setters to a PyProxy with Object.defineProperty and improved compliance with
JavaScript rules around Proxy traps. #4033

• Enhancement The promise methods then, catch and finally_ are now present also on Tasks as well as
Futures. #3748

• Enhancement Added methods to a PyProxy of a list to make these work as drop-in replacements for JavaScript
Arrays. #3853

• Enhancement When a JsProxy of an array is passed to Python builtin functions that use the PySequence_*
APIs, it now works as expected. Also jsarray * n repeats the array n times and jsarray + iterable
returns a new array with the result values from the iterable appended. #3904

3.3. Project 191

https://github.com/pyodide/pyodide/pull/3741
https://github.com/pyodide/pyodide/pull/3665
https://github.com/pyodide/pyodide/pull/3659
https://github.com/pyodide/pyodide/pull/3822
https://github.com/pyodide/pyodide/pull/3889
https://github.com/pyodide/pyodide/pull/3890
https://github.com/pyodide/pyodide/pull/3888
https://github.com/pyodide/pyodide/pull/4055
https://github.com/pyodide/pyodide/pull/4056
https://github.com/pyodide/pyodide/pull/4073
https://github.com/pyodide/pyodide/pull/4094
https://github.com/pyodide/pyodide/pull/4100
https://github.com/pyodide/pyodide/pull/3993
https://github.com/pyodide/pyodide/pull/4027
https://github.com/pyodide/pyodide/pull/3870
https://github.com/pyodide/pyodide/pull/4035
https://github.com/pyodide/pyodide/pull/2078
https://github.com/pyodide/pyodide/pull/4052
https://github.com/pyodide/pyodide/pull/3986
https://github.com/pyodide/pyodide/pull/4053
https://github.com/pyodide/pyodide/pull/4096
https://github.com/pyodide/pyodide/pull/4033
https://github.com/pyodide/pyodide/pull/3748
https://github.com/pyodide/pyodide/pull/3853
https://github.com/pyodide/pyodide/pull/3904

Pyodide, Release 0.26.0.dev0

Deployment

• API Change Changed the name of the default lockfile from repodata.json to pyodide-lock.json #3824

Build System

• Update The docker image now has node v20 instead of node v14. #3819

• Enhancement Added check_wasm_magic_number function to validate .so files for WebAssembly (WASM)
compatibility. #4018

• Enhancement In pyodide build, automatically skip building package dependencies that are already included in
the pyodide distribution. #4058

Packages

• New packages: sourmash #3635, screed #3635, bitstring #3635, deprecation #3635, cachetools #3635, xyzser-
vices #3786, simplejson #3801, protobuf #3813, peewee #3897, Cartopy #3909, pyshp #3909, netCDF4 #3910,
igraph #3991, CoolProp #4028, contourpy #4102, awkward-cpp #4101, orjson #4036.

• Upgraded numpy to 1.25.2 #4125

• Upgraded scipy to 1.11.1 #3794, #3996

• OpenBLAS has been added and scipy now uses OpenBLAS rather than CLAPACK #3331.

Pyodide CLI

• Enhancement pyodide build-recipes now accepts a --metadata-files option to install *.whl.
metadata files as specified in PEP 658. #3981

Misc

• Enhancement Add an example for loadPyodide and pyodide.runPython {pr}4012, {pr}4011`

Version 0.23.4

July 6, 2023

• Enhancement The environment variable PYODIDE_BUILD_EXPORTS can now be used instead of the --exports
argument to pyodide build to specify .so file exports of packages. #3973

• Fix Pin pydantic to <2. #3971

• Enhancement Allow customizing cache location for packages when running in Node #3967

• Enhancement Re-enabled sparseqr, freesasa, lightgbm, opencv-python, and wordcloud #3783, #3970

• Fix A JSProxy of a DOMException will now inherit from exception so it can be raised in Python. #3868

• Fix The feature detection for JSProxy has been improved so that it should never fail even when handling strange
or ill-behaved JavaScript proxy objects. #3740, #3750

192 Chapter 3. Table of contents

https://github.com/pyodide/pyodide/pull/3824
https://github.com/pyodide/pyodide/pull/3819
https://github.com/pyodide/pyodide/pull/4018
https://github.com/pyodide/pyodide/pull/4058
https://github.com/pyodide/pyodide/pull/3635
https://github.com/pyodide/pyodide/pull/3635
https://github.com/pyodide/pyodide/pull/3635
https://github.com/pyodide/pyodide/pull/3635
https://github.com/pyodide/pyodide/pull/3635
https://github.com/pyodide/pyodide/pull/3786
https://github.com/pyodide/pyodide/pull/3801
https://github.com/pyodide/pyodide/pull/3813
https://github.com/pyodide/pyodide/pull/3897
https://github.com/pyodide/pyodide/pull/3909
https://github.com/pyodide/pyodide/pull/3909
https://github.com/pyodide/pyodide/pull/3910
https://github.com/pyodide/pyodide/pull/3991
https://github.com/pyodide/pyodide/pull/4028
https://github.com/pyodide/pyodide/pull/4102
https://github.com/pyodide/pyodide/pull/4101
https://github.com/pyodide/pyodide/pull/4036
https://github.com/pyodide/pyodide/pull/4125
https://github.com/pyodide/pyodide/pull/3794
https://github.com/pyodide/pyodide/pull/3996
https://github.com/pyodide/pyodide/pull/3331
https://peps.python.org/pep-0658/
https://github.com/pyodide/pyodide/pull/3981
https://github.com/pyodide/pyodide/pull/3973
https://github.com/pyodide/pyodide/pull/3971
https://github.com/pyodide/pyodide/pull/3967
https://github.com/pyodide/pyodide/pull/3783
https://github.com/pyodide/pyodide/pull/3970
https://github.com/pyodide/pyodide/pull/3868
https://github.com/pyodide/pyodide/pull/3740
https://github.com/pyodide/pyodide/pull/3750

Pyodide, Release 0.26.0.dev0

• Fix A PyProxy of a callable is now an instanceof Function. (If you are trying to feature detect whether
something is callable or not in JavaScript, the correct way is to use typeof o === "function". But you may
have dependencies that don’t do this correctly.) #3925

• Fix from jsmodule import * now works. #3903

Version 0.23.3

June 17, 2023

• Fix getattr(jsproxy, 'python_reserved_word') works as expected again (as well as hasattr and
setattr). This fixes a regression introduced in #3617. #3926

• Fix pyodide build now replaces native .so slugs with Emscripten slugs. Usually .sos in the generated wheels
are actually Emscripten .sos so this is good. If they are actually native .sos then there is a problem either way.
#3903

Version 0.23.2

May 2, 2023

• Enhancement Changed the name of the --output-directory argument to pyodide build to --outdir to
match pypa/build. --output-directory is still accepted for backwards compatibility. #3811

Version 0.23.1

April 13, 2023

Deployment

• Fix Export python_stdlib.zip in package.json. #3723

CLI

• Enhancement pyodide build now accepts an --output-directory argument. #3746

• Fix Fix pyodide py-compile not to ignore the --compression-level option when applied on a single file.
#3727

• Fix Fix an issue where the pyodide venv command did not work correctly in pyodide-build version 0.23.0
because of missing python_stdlib.zip. #3760

• Fix python -m pip works correctly in the Pyodide venv now. #3761

• Fix Executables installed in a Pyodide virtual environment now run in Pyodide not in the host Python. #3752

3.3. Project 193

https://github.com/pyodide/pyodide/pull/3925
https://github.com/pyodide/pyodide/pull/3903
https://github.com/pyodide/pyodide/pull/3617
https://github.com/pyodide/pyodide/pull/3926
https://github.com/pyodide/pyodide/pull/3903
https://github.com/pyodide/pyodide/pull/3811
https://github.com/pyodide/pyodide/pull/3723
https://github.com/pyodide/pyodide/pull/3746
https://github.com/pyodide/pyodide/pull/3727
https://github.com/pyodide/pyodide/pull/3760
https://github.com/pyodide/pyodide/pull/3761
https://github.com/pyodide/pyodide/pull/3752

Pyodide, Release 0.26.0.dev0

Build System

• Fix Fix PYODIDE_ROOT to point the correct directory when running out-of-tree build. #3751

Version 0.23.0

March 30, 2023

General

• Update Pyodide now runs Python 3.11.2 which officially supports WebAssembly as a PEP11 Tier 3 platform.
#3252, #3614

• Update We now build libpyodide.a so the Pyodide foreign function interface can be experimentally linked into
other Emscripten builds of Python. #3335

• Enhancement Updated Emscripten to version 3.1.32 #3471, #3517, #3599

JavaScript API

• BREAKING CHANGE Type exports of PyProxy subtypes have been moved from pyodide to pyodide/ffi
and many of them have changed names. The original exports are still available but they are deprecated. #3523

• BREAKING CHANGE The methods for checking PyProxy capabilities (e.g., supportsHas, isCallable) are
now deprecated. Use e.g., instanceof pyodide.ffi.PyCallable instead. #3523

• Enhancement Added subclasses of PyProxy for each mixin. These can be used to check whether a PyProxy
supports a given set of methods with instanceof e.g., x instanceof pyodide.ffi.PyDict. #3523

• Enhancement Added stdLibURL parameter to loadPyodide allowing to customize the URL from which the
Python standard library is loaded. #3670

• Enhancement Checking whether an object is an instance of a PyProxy now only recognizes a PyProxy generated
from the same Python interpreter. This means that creating multiple interpreters and importing a PyProxy from
one into another no longer causes a fatal error. #3545

• Enhancement as_object_map now accepts a keyword argument hereditary. If set to True and indexing the
object returns a plain-old-object, then the return value will be automatically mapped in as_object_map as well.
#3638

• Enhancement A JsProxy of a JavaScript error object can be directly thrown as Python exceptions. Previously
Pyodide automatically wrapped them in a JsException but that is no longer needed – now JsException
inherits from both JsProxy and Exception. #3455

• Enhancement runPython and runPythonAsync now accept a locals argument. #3618

• Fix Calling loadPyodide repeatedly in Node no longer results in MaxListenersExceededWarning. Also,
calling loadPyodide in Node v14 no longer changes unhandled rejections in promises. #3542

• Fix If the locals argument to eval_code or eval_code_async is None it now uses locals=globals as the
documentation says. #3580

194 Chapter 3. Table of contents

https://github.com/pyodide/pyodide/pull/3751
https://peps.python.org/pep-0011/#tier-3
https://github.com/pyodide/pyodide/pull/3252
https://github.com/pyodide/pyodide/pull/3614
https://github.com/pyodide/pyodide/pull/3335
https://github.com/pyodide/pyodide/pull/3471
https://github.com/pyodide/pyodide/pull/3517
https://github.com/pyodide/pyodide/pull/3599
https://github.com/pyodide/pyodide/pull/3523
https://github.com/pyodide/pyodide/pull/3523
https://github.com/pyodide/pyodide/pull/3523
https://github.com/pyodide/pyodide/pull/3670
https://github.com/pyodide/pyodide/pull/3545
https://github.com/pyodide/pyodide/pull/3638
https://github.com/pyodide/pyodide/pull/3455
https://github.com/pyodide/pyodide/pull/3618
https://github.com/pyodide/pyodide/pull/3542
https://github.com/pyodide/pyodide/pull/3580

Pyodide, Release 0.26.0.dev0

Python standard library

• BREAKING CHANGE Unvendored _pydecimal and pydoc_data from the standard library. Now these mod-
ules need to be loaded with pyodide.loadPackage or micropip.install, or auto-loaded via imports in
pyodide.runPythonAsync #3525

• BREAKING CHANGE Test files of stdlib ctypes and unittest are now moved to test/ctypes and test/
unittest respectively. This change is adapted from CPython 3.12. #3507

Deployment

• BREAKING CHANGE Pyodide no longer uses Emscripten preload plugin, hence pyodide.asm.data is re-
moved, in favor of python_stdlib.zip. This change normally shouldn’t affect users, but if you were using
this file in a bundler, you will need to remove it. #3584

• BREAKING CHANGE pyodide_py.tar file is removed. This change normally shouldn’t affect users, but if
you were using this file in a bundler, you will need to remove it. #3621

• BREAKING CHANGE Python standard libraries are now vendored in a zipfile: /lib/python{version}.
zip in the in-browser MEMFS file system. If you need to access the standard library source code, you need to
unpack the zip file. For example: import shutil; shutil.unpack_archive('/lib/python311.zip',
'/lib/python3.11', 'zip) #3584

• Fix Improves the compression of wheel files with the JsDelivr CDN. For browsers that support the Brotli com-
pression (most modern ones) this should result in a size reduction of 20-30%. Also most many pyodide CLI
sub-commands now support --compression-level as an optional parameter. #3655

• BREAKING CHANGE Following libraries are now not linked to the Pyodide main module: libgl, libal,
libhtml5. This normally shouldn’t affect users, but if you are using these libraries in a package that are built
out-of-tree, you will need to link them to the package manually. #3505

Python / JavaScript Foreign Function Interface

• Fix PyProxies of Async iterators are now async iterable JavaScript objects. The code:

for await (let x of async_iterator_pyproxy) {
// ...

}

would previously fail with TypeError: async_iterator_pyproxy is not async iterable. (Python
async iterables that were not also iterators were already async iterable, the problem was only with Python objects
that are both async iterable and an async iterator.) #3708

• Enhancement A py-compiled build which has smaller and faster-to-load packages is now deployed under
https://cdn.jsdelivr.net/pyodide/v0.23.0/pyc/ (also for future versions). The exceptions obtained
with this builds will not include code snippets however. #3701

• BREAKING CHANGE Removed support for calling functions from the root of pyodide package directly. This
has been deprecated since v0.21.0. Now all functions are only available under submodules. #3677

• BREAKING CHANGE Removed support for passing the “message” argument to PyProxy.destroy in a posi-
tional argument. This has been deprecated since v0.22.0. #3677

• Enhancement Python does not allow reserved words to be used as attributes. For instance, Array.from is a
SyntaxError. (JavaScript has a more robust parser which can handle this.) To handle this, if an attribute to a
JsProxy consists of a Python reserved word followed by one or more underscores, we remove a single underscore

3.3. Project 195

https://github.com/pyodide/pyodide/pull/3525
https://github.com/python/cpython/issues/93839
https://github.com/pyodide/pyodide/pull/3507
https://github.com/pyodide/pyodide/pull/3584
https://github.com/pyodide/pyodide/pull/3621
https://github.com/pyodide/pyodide/pull/3584
https://github.com/pyodide/pyodide/pull/3655
https://github.com/pyodide/pyodide/pull/3505
https://github.com/pyodide/pyodide/pull/3708
https://github.com/pyodide/pyodide/pull/3701
https://github.com/pyodide/pyodide/pull/3677
https://github.com/pyodide/pyodide/pull/3677

Pyodide, Release 0.26.0.dev0

from the end of the attribute. For instance, Array.from_would access from on the underlying JavaScript object,
whereas o.from__ accesses the from_ attribute. #3617

Build System

• BREAKING CHANGE When building meta-packages (core and min-scipy-stack), you must prefix tag: to
the meta-package name. For example, to build the coremeta-package, you must run pyodide build-recipes
tag:core, or PYODIDE_PACKAGES="tag:core" make. #3444

• Enhancement Add --build-dependencies to pyodide build command to fetch and build dependencies of
a package being built. Also adds --skip-dependency to ignore selected dependencies. #3310

• Enhancement Added pyodide build support for building a list of packages from a requirements.txt file with
pyodide build -r <requirements.txt>. Also can output a list of chosen dependencies in the same format
when building a package and dependencies using the --output-lockfile <lockfile.txt> argument. This
enables repeatable builds of packages. #3469

• Enhancement Added package/tag key to the meta.yaml spec to group packages. #3444

• Enhancement pyodide build-recipes now autodetects the number of CPU cores in the system and uses them
for parallel builds. #3559 #3598

• Fix Fixed pip install error when installing cross build environment. #3562

• Enhancement Response files are now correctly handled when calculating exported symbols. #3645

• Fix Fix occasional build failure when building rust packages. #3607

• Enhancement Improved logging in pyodide-build with rich. #3442

• Enhancement pyodide build-recipes now accepts --no-deps parameter, which skips building dependen-
cies of the package. This replaces pyodide-build buildpkg. #3520

• Enhancement pyodide build-recipes now works out-of-tree.

Pyodide CLI

• BREAKING CHANGE Removed deprecated CLI entrypoints pyodide-build buildall which is replaced
by pyodide build-recipes, and pyodide-build mkpkg which is replaced by pyodide skeleton pypi
#3668.

• Feature Added pyodide py-compile CLI command that py compiles a wheel or a zip file, converting .py files
to .pyc files. It can also be applied to a folder with wheels / zip files. If the input folder contains the repodata.
json the paths and checksums it contains will also be updated #3253 #3700

• Feature Added pyodide create-zipfile CLI command that creates a zip file of a directory. This command
is hidden by default since it is not intended for use by end users. #3411 #3463

196 Chapter 3. Table of contents

https://github.com/pyodide/pyodide/pull/3617
https://github.com/pyodide/pyodide/pull/3444
https://github.com/pyodide/pyodide/pull/3310
https://github.com/pyodide/pyodide/pull/3469
https://github.com/pyodide/pyodide/pull/3444
https://github.com/pyodide/pyodide/pull/3559
https://github.com/pyodide/pyodide/pull/3598
https://github.com/pyodide/pyodide/pull/3562
https://github.com/pyodide/pyodide/pull/3645
https://github.com/pyodide/pyodide/pull/3607
https://github.com/pyodide/pyodide/pull/3442
https://github.com/pyodide/pyodide/pull/3520
https://github.com/pyodide/pyodide/pull/3668
https://github.com/pyodide/pyodide/pull/3253
https://github.com/pyodide/pyodide/pull/3700
https://github.com/pyodide/pyodide/pull/3411
https://github.com/pyodide/pyodide/pull/3463

Pyodide, Release 0.26.0.dev0

REPL

• Fix Non-breaking space characters are now automatically converted to regular spaces in pyodide REPL. #3558

• Enhancement Allow changing the build type used in the REPL by passing the build argument to the REPL
URL. For instance, https://pyodide.org/en/latest/console.html?build=debug will load debug dev
build. #3671

Packages

• New packages: fastparquet #3590, cramjam #3590, pynacl #3500, pyxel #3508. mypy #3504, multidict #3581,
yarl #3702, idna #3702, cbor-diag #3581.

• Upgraded to micropip 0.3.0 (see changelog #3709

• Added experimental support for SDL based packages #3508

• Upgraded packages: see the list of packages versions in this release in Packages built in Pyodide.

List of Contributors

Alexey Ignatiev, Andrea Giammarchi, Arpit, Christian Clauss, Deepak Cherian, Eli Lamb, Feodor Fitsner, Gyeongjae
Choi, Hood Chatham, Jeff Glass, Jo Bovy, Joe Marshall, josephrocca, Loïc Estève, martinRenou, messense, Nicholas
Bollweg, Roman Yurchak, TheOnlyWayUp, Victor Blomqvist, Ye Joo Park

Version 0.22.1

January 25, 2023

• BREAKING CHANGE setStdin now accepts an extra autoEOF parameter. If true, it will insert an EOF
automatically after each string or buffer. Defaults to true. This also affects the behavior of the stdin argument
to loadPyodide. #3488

• Fix from pyodide.ffi import * doesn’t raise an ImportError anymore. #3484

• Enhancement Pyodide displays a better message when someone calls posix exit or os._exit. #3496

Package Loading

• Fix Fix incorrect error message when loading a package include in Pyodide fails. #3435

Build system

• Fix Emscripten is no longer required to create a Pyodide virtual environment. #3485

• Fix Fixed a bug where pyodide build would fail on package that use CMake, when run multiple times. #3445

• Fix pyodide build: Don’t pass the directory to the build backend args, only pass the arguments. #3490

• Fix pyodide config won’t print extra messages anymore. #3483

• Fix Pass the same environment variables for out of tree builds as for in tree builds. #3495

3.3. Project 197

https://github.com/pyodide/pyodide/pull/3558
https://github.com/pyodide/pyodide/pull/3671
https://github.com/pyodide/pyodide/pull/3590
https://github.com/pyodide/pyodide/pull/3590
https://github.com/pyodide/pyodide/pull/3500
https://github.com/pyodide/pyodide/pull/3508
https://github.com/pyodide/pyodide/pull/3504
https://github.com/pyodide/pyodide/pull/3581
https://github.com/pyodide/pyodide/pull/3702
https://github.com/pyodide/pyodide/pull/3702
https://github.com/pyodide/pyodide/pull/3581
https://github.com/pyodide/micropip/blob/main/CHANGELOG.md
https://github.com/pyodide/pyodide/pull/3709
https://github.com/pyodide/pyodide/pull/3508
https://github.com/pyodide/pyodide/pull/3488
https://github.com/pyodide/pyodide/pull/3484
https://github.com/pyodide/pyodide/pull/3496
https://github.com/pyodide/pyodide/pull/3435
https://github.com/pyodide/pyodide/pull/3485
https://github.com/pyodide/pyodide/pull/3445
https://github.com/pyodide/pyodide/pull/3490
https://github.com/pyodide/pyodide/pull/3483
https://github.com/pyodide/pyodide/pull/3495

Pyodide, Release 0.26.0.dev0

Version 0.22.0

January 3, 2023

See the release notes for a summary.

Deployment and testing

• BREAKING CHANGE pyodide-cdn2.iodide.io is not available anymore. Please use https://cdn.
jsdelivr.net/pyodide instead. #3150.

• BREAKING CHANGE We don’t publish pre-built Pyodide docker images anymore. Note that ./run_docker
--pre-built was not working for a while and it was actually equivalent to ./run_docker. If you need to
build a single Python wheel out of tree, you can use the pyodide build command instead. See our blog post
for more information. #3342.

• Enhancement The releases are now called pyodide-{version}.tar.gz rather than
pyodide-build-{version}.tar.gz #2996

• Enhancement Added a new release file called pyodide-core-{version}.tar.gz intended for use in Node.
It contains the files needed to start Pyodide and no additional packages. #2999

• Enhancement The full test suite is now run in Safari #2578, #3095.

• Enhancement Added Gitpod configuration to the repository. #3201

Foreign function interface

JsProxy / JavaScript from Python

• Enhancement Implemented reverse, __reversed__, count, index, append, and pop for JsProxy of
Javascript arrays so that they implement the collections.abc.MutableSequence API. #2970

• Enhancement Implemented methods keys, items, values, get, pop, setdefault, popitem, update, and
clear for JsProxy of map-like objects so that they implement the collections.abc.MutableMapping API.
#3275

• Enhancement It’s now possible to destructure a JavaScript array, map, or object returned by as_object_map
with a match statement. #2906

• Enhancement Added then, catch, and finally_ methods to the Futures used by Pyodide’s event loop so they
can be used like Promises. #2997

• Enhancement create_proxy now takes an optional roundtrip parameter. If this is set to True, then when the
proxy is converted back to Python, it is converted back to the same double proxy. This allows the proxy to be
destroyed from Python even if no reference is retained. #3163, #3369

• Enhancement A JsProxy of a function now has a __get__ descriptor method, so it’s possible to use a JavaScript
function as a Python method. When the method is called, this will be a PyProxy pointing to the Python object
the method is called on. #3130

• Enhancement A JsProxy now has an as_object_map method. This will treat the object as a mapping over its
ownKeys so for instance: run_js("({a:2, b:3})").as_object_map()["a"] will return 2. These imple-
ment collections.abc.MutableMapping. #3273, #3295, #3297

• Enhancement Split up the JsProxy documentation class into several classes, e.g., JsBuffer, JsPromise, etc.
Implemented issubclass and isinstance on the various synthetic and real JsProxy classes so that they
behave the way one might naively expect them to (or at least closer to that than it was before). #3277

198 Chapter 3. Table of contents

https://blog.pyodide.org/posts/0.22-release/
https://github.com/pyodide/pyodide/pull/3150
https://blog.pyodide.org/posts/0.21-release/#building-binary-wheels-for-pyodide
https://github.com/pyodide/pyodide/pull/3342
https://github.com/pyodide/pyodide/pull/2996
https://github.com/pyodide/pyodide/pull/2999
https://github.com/pyodide/pyodide/pull/2578
https://github.com/pyodide/pyodide/pull/3095
https://github.com/pyodide/pyodide/pull/3201
https://github.com/pyodide/pyodide/pull/2970
https://github.com/pyodide/pyodide/pull/3275
https://github.com/pyodide/pyodide/pull/2906
https://github.com/pyodide/pyodide/pull/2997
https://github.com/pyodide/pyodide/pull/3163
https://github.com/pyodide/pyodide/pull/3369
https://github.com/pyodide/pyodide/pull/3130
https://github.com/pyodide/pyodide/pull/3273
https://github.com/pyodide/pyodide/pull/3295
https://github.com/pyodide/pyodide/pull/3297
https://github.com/pyodide/pyodide/pull/3277

Pyodide, Release 0.26.0.dev0

• Enhancement Added type parameters to many of the JsProxy subtypes. #3387

• Enhancement Added JsGenerator and JsIterator types to pyodide.ffi. Added send method to
JsIterators and throw, and close methods to JsGenerators. #3294

• Enhancement It is now possible to use asynchronous JavaScript iterables, iterators and generators from Python.
This includes support for aiter for async interables, anext and asend for async iterators, and athrow and
aclose for async generators. #3285, #3299, #3339

• Enhancement JavaScript generators and async generators that are created from Python now are wrapped so that
Python objects sent to them as arguments or from .send / .asend are kept alive until the generator is exhausted
or .closed. This makes generators significantly more ergonomic to use, at the cost of making memory leaks
more likely if the generator is never finalized. #3317

• Enhancement Added a mypy typeshed for some common functionality for the js module. #3298

• Enhancement mypy understands the types of more things now. #3385

• Fix Fixed bug in split argument of pyodide.console.repr_shorten. Added shorten function. #3178

PyProxy / Using Python from JavaScript

• Enhancement Added a type field to PythonError (e.g., a StopIteration error would have e.type ===
"StopIteration") #3289

• Enhancement It is now possible to use asynchronous Python generators from JavaScript. #3290

• Enhancement PyProxies of synchronous and asynchronous Python generators now support return and throw
APIs that behave like the ones on JavaScript generators. #3346

• Enhancement It is possible to make a PyProxy that takes this as the first argument using the PyProxy.
captureThis method. The create_proxy method also has a capture_this argument which causes the
PyProxy to receive this as the first argument if set to True #3103, #3145

JavaScript API

• Enhancement Users can do a static import of pyodide/pyodide.asm.js to avoid issues with dynamic imports.
This allows the use of Pyodide with module-type service workers. #3070

• Enhancement Added a new API pyodide.mountNativeFS which mounts a FileSystemDirectoryHandle
into the Pyodide file system. #2987

• Enhancement loadPyodide has a new option called args. This list will be passed as command line arguments
to the Python interpreter at start up. #3021, #3282

• Removed “Python initialization complete” message printed when loading is finished. {pr}`3247

• BREAKING CHANGE The messageCallback and errorCallback argument to loadPackage and
loadPackagesFromImports is now passed as named arguments. The old usage still works with a dep-
recation warning. #3149

• Enhancement loadPackage and loadPackagesFromImports now accepts a new option checkIntegrity.
If set to False, integrity check for Python Packages will be disabled.

• Enhancement Added APIs pyodide.setStdin, pyodide.setStdout, pyodide.setStderr for changing the
stream handlers after loading Pyodide. Also added more careful control over whether isatty returns true or
false on stdin, stdout, and stderr. #3268

3.3. Project 199

https://github.com/pyodide/pyodide/pull/3387
https://github.com/pyodide/pyodide/pull/3294
https://github.com/pyodide/pyodide/pull/3285
https://github.com/pyodide/pyodide/pull/3299
https://github.com/pyodide/pyodide/pull/3339
https://github.com/pyodide/pyodide/pull/3317
https://github.com/pyodide/pyodide/pull/3298
https://github.com/pyodide/pyodide/pull/3385
https://github.com/pyodide/pyodide/pull/3178
https://github.com/pyodide/pyodide/pull/3289
https://github.com/pyodide/pyodide/pull/3290
https://github.com/pyodide/pyodide/pull/3346
https://github.com/pyodide/pyodide/pull/3103
https://github.com/pyodide/pyodide/pull/3145
https://github.com/pyodide/pyodide/pull/3070
https://developer.mozilla.org/en-US/docs/Web/API/FileSystemDirectoryHandle
https://github.com/pyodide/pyodide/pull/2987
https://github.com/pyodide/pyodide/pull/3021
https://github.com/pyodide/pyodide/pull/3282
https://github.com/pyodide/pyodide/pull/3149
https://github.com/pyodide/pyodide/pull/3268

Pyodide, Release 0.26.0.dev0

Package Loading

• Enhancement Pyodide now shows more helpful error messages when importing packages that are included in
Pyodide fails. #3137, #3263

• Fix Shared libraries with version suffixes are now handled correctly. #3154

• BREAKING CHANGE Unvendored the sqlite3 module from the standard library. Before sqlite3was included
by default. Now it needs to be loaded with pyodide.loadPackage or micropip.install. #2946

• BREAKING CHANGE The Pyodide Python package is installed into /lib/python3.10 rather than /lib/
python3.10/site-packages. #3022

• BREAKING CHANGE The matplotlib HTML5 backends are now available as part of the
matplotlib-pyodide package. If you use the default backend from Pyodide, no changes are necessary.
However, if you previously specified the backend with matplotlib.use, the URL is now different. See
package readme for more details. #3061

• BREAKING CHANGE The micropip package was moved to a separate repository pyodide/micropip. In addion
to installing the version shipped with a given Pyodide release, you can also install a different micropip version
from PyPi with,

await pyodide.loadPackage('packaging')
await pyodide.loadPackage('<URL of the micropip wheel on PyPI>')

from Javascript. From Python you can import the Javascript Pyodide package,

import pyodide_js

and call the same functions as above. #3122

• Enhancement The parsing and validation of meta.yaml according to the specification is now done more rigor-
ously with Pydantic. #3079

• BREAKING CHANGE The source/md5 checksum field is not longer supported in meta.yaml files, use
source/sha256 instead #3079

• BREAKING CHANGE pyodide_build.io.parse_package_config function is removed in favor of
pyodide_build.MetaConfig.from_yaml #3079

• Fix ctypes.util.find_library will now search WASM modules from LD_LIBRARY_PATH. #3353

Build System

• Enhancement Updated Emscripten to version 3.1.27 #2958, #2950, #3027, #3107, #3148, #3236, #3239, #3280,
#3314

• Enhancement Added requirements/host key to the meta.yaml spec to allow host dependencies that are
required for building packages. #2132

• Enhancement Added package/top-level key to the meta.yaml spec to calculate top-level import names for
the package. Previously test/imports key was used for this purpose. #3006

• Enhancement Added build/vendor-sharedlib key to the meta.yaml spec which vendors shared libraries
into the wheel after building. #3234 #3264

• Enhancement Added build/type key to the meta.yaml spec which specifies the type of the package. #3238

• Enhancement Added requirements/executable key to the meta.yaml spec which specifies the list of exe-
cutables required for building a package. #3300

200 Chapter 3. Table of contents

https://github.com/pyodide/pyodide/pull/3137
https://github.com/pyodide/pyodide/pull/3263
https://github.com/pyodide/pyodide/pull/3154
https://github.com/pyodide/pyodide/pull/2946
https://github.com/pyodide/pyodide/pull/3022
https://github.com/pyodide/matplotlib-pyodide
https://github.com/pyodide/matplotlib-pyodide
https://github.com/pyodide/pyodide/pull/3061
https://github.com/pyodide/micropip
https://pypi.org/project/micropip/
https://github.com/pyodide/pyodide/pull/3122
https://github.com/pyodide/pyodide/pull/3079
https://github.com/pyodide/pyodide/pull/3079
https://github.com/pyodide/pyodide/pull/3079
https://github.com/pyodide/pyodide/pull/3353
https://github.com/pyodide/pyodide/pull/2958
https://github.com/pyodide/pyodide/pull/2950
https://github.com/pyodide/pyodide/pull/3027
https://github.com/pyodide/pyodide/pull/3107
https://github.com/pyodide/pyodide/pull/3148
https://github.com/pyodide/pyodide/pull/3236
https://github.com/pyodide/pyodide/pull/3239
https://github.com/pyodide/pyodide/pull/3280
https://github.com/pyodide/pyodide/pull/3314
https://github.com/pyodide/pyodide/pull/2132
https://github.com/pyodide/pyodide/pull/3006
https://github.com/pyodide/pyodide/pull/3234
https://github.com/pyodide/pyodide/pull/3264
https://github.com/pyodide/pyodide/pull/3238
https://github.com/pyodide/pyodide/pull/3300

Pyodide, Release 0.26.0.dev0

• BREAKING CHANGE build/library and build/sharedlibrary key in the meta.yaml spec are removed.
Use build/type instead. #3238

• Fix Fixed a bug that backend-flags propagated to dependencies. #3153

• Fix Fixed a bug that shared libraries are not copied into distribution directory when it is already built. #3212

• Enhancement Added a system for making Pyodide virtual environments. This is for testing out of tree builds. For
more information, see the documentation. #2976, #3039, #3040, #3044, #3096, #3098, #3108, #3109, #3241

• Added a new CLI command pyodide skeletonwhich creates a package build recipe. pyodide-build mkpkg
will be replaced by pyodide skeleton pypi. #3175

• Added a new CLI command pyodide build-recipes which build packages from recipe folder. It replaces
pyodide-build buildall. #3196 #3279

• Added a new CLI command pyodide config which shows config variables used in Pyodide. #3376

• Added subcommands for pyodide build which builds packages from various sources.

command result
pyodide build pypi build or fetch a single package from pypi
pyodide build source build the current source folder (same as pyodide build)
pyodide build url build or fetch a package from a url either tgz, tar.gz zip or wheel
#3196

Packages

• New packages: pycryptodome #2965, coverage-py #3053, bcrypt #3125, lightgbm #3138, pyheif, pillow_heif,
libheif, libde265 #3161, wordcloud #3173, gdal, fiona, geopandas #3213, the standard library _hashlib module
#3206 , pyinstrument #3258, gensim #3326, smart_open #3326, pyodide-http #3355.

• Fix Scipy CSR data is now handled correctly in XGBoost. #3194

• Update Upgraded packages: SciPy 1.9.1 #3043, pandas 1.5.0 #3134, numpy 1.23.3 #3284, scikit-learn 1.1.3
#3324 as well as most of the other packages #3348 #3365. See Packages built in Pyodide for more details.

• Fix Fix scipy handling of exceptions that are raised from C++ code. #3384.

List of Contributors

Aierie, dataxerik, David Lechner, Deepak Cherian, Filipe, Gyeongjae Choi, Hood Chatham, H.Yamada, Jacques Boscq,
Jeremy Tuloup, Joe Marshall, John Wason, Loïc Estève, partev, Patrick Arminio, Péter Ferenc Gyarmati, Prete, Qijia
Liu, Roman Yurchak, ryanking13, skelsec, Starz0r, Will Lachance, YeonWoo, Yizhi Liu

3.3. Project 201

https://github.com/pyodide/pyodide/pull/3238
https://github.com/pyodide/pyodide/pull/3153
https://github.com/pyodide/pyodide/pull/3212
https://github.com/pyodide/pyodide/pull/2976
https://github.com/pyodide/pyodide/pull/3039
https://github.com/pyodide/pyodide/pull/3040
https://github.com/pyodide/pyodide/pull/3044
https://github.com/pyodide/pyodide/pull/3096
https://github.com/pyodide/pyodide/pull/3098
https://github.com/pyodide/pyodide/pull/3108
https://github.com/pyodide/pyodide/pull/3109
https://github.com/pyodide/pyodide/pull/3241
https://github.com/pyodide/pyodide/pull/3175
https://github.com/pyodide/pyodide/pull/3196
https://github.com/pyodide/pyodide/pull/3279
https://github.com/pyodide/pyodide/pull/3376
https://github.com/pyodide/pyodide/pull/3196
https://github.com/pyodide/pyodide/pull/2965
https://github.com/pyodide/pyodide/pull/3053
https://github.com/pyodide/pyodide/pull/3125
https://github.com/pyodide/pyodide/pull/3138
https://github.com/pyodide/pyodide/pull/3161
https://github.com/pyodide/pyodide/pull/3173
https://github.com/pyodide/pyodide/pull/3213
https://github.com/pyodide/pyodide/pull/3206
https://github.com/pyodide/pyodide/pull/3258
https://github.com/pyodide/pyodide/pull/3326
https://github.com/pyodide/pyodide/pull/3326
https://github.com/pyodide/pyodide/pull/3355
https://github.com/pyodide/pyodide/pull/3194
https://github.com/pyodide/pyodide/pull/3043
https://github.com/pyodide/pyodide/pull/3134
https://github.com/pyodide/pyodide/pull/3284
https://github.com/pyodide/pyodide/pull/3324
https://github.com/pyodide/pyodide/pull/3348
https://github.com/pyodide/pyodide/pull/3365
https://github.com/pyodide/pyodide/pull/3384

Pyodide, Release 0.26.0.dev0

Version 0.21.3

September 15, 2022

• Fix When loading sqlite3, loadPackage no longer also loads nltk and regex. #3001

• Fix Packages are now loaded in a topologically sorted order regarding their dependencies. #3020

• BREAKING CHANGE Loading the soupsieve package will not automatically load beautifulsoup4 together.
#3020

• Fix Fix the incorrect package name ruamel to ruamel.yaml. #3036

• Fix loadPyodide will now raise error when the version of JavaScript and Python Pyodide package does not
match. #3074

• Enhancement Pyodide now works with a content security policy that doesn’t include unsafe-eval. It is still
necessary to include wasm-unsafe-eval (and probably always will be). Since current Safari versions have no
support for wasm-unsafe-eval, it is necessary to include unsafe-eval in order to work in Safari. This will
likely be fixed in the next Safari release: https://bugs.webkit.org/show_bug.cgi?id=235408 #3075

• Fix It works again to use loadPyodide with a relative URL as indexURL (this was a regression in v0.21.2).
#3077

• Fix Add url to list of pollyfilled packages for webpack compatibility. #3080

• Fix Fixed warnings like Critical dependency: the request of a dependency is an
expression. when using Pyodide with webpack. #3080

• Enhancement Add binary files to exports in JavaScript package #3085.

• Fix Source maps are included in the distribution again (reverting #3015 included in 0.21.2) and if there is a
variable in top level scope called __dirname we use that for the indexURL. #3088

• Fix PyProxy.apply now correctly handles the case when something unexpected is passed as the second argu-
ment. #3101

Version 0.21.2

August 29, 2022

• Fix The standard library packages ssl and lzma can now be installed with pyodide.loadPackage("ssl") or
micropip.install("ssl") (previously they had a leading underscore and it was only possible to load them
with pyodide.loadPackage). #3003

• Fix If a wheel path is passed to pyodide.loadPackage, it will now be resolved relative to document.location
(in browser) or relative to the current working directory (in Node) rather than relative to indexURL. #3013, #3011

• Fix Fixed a bug in Emscripten that caused Pyodide to fail in Jest. #3014

• Fix It now works to pass a relative url to indexURL. Also, the calculated index URL now works even if node is
run with --enable-source-maps. #3015

202 Chapter 3. Table of contents

https://github.com/pyodide/pyodide/issues/3001
https://github.com/pyodide/pyodide/pull/3020
https://github.com/pyodide/pyodide/pull/3020
https://github.com/pyodide/pyodide/pull/3036
https://github.com/pyodide/pyodide/pull/3074
https://github.com/pyodide/pyodide/pull/3075
https://github.com/pyodide/pyodide/pull/3077
https://github.com/pyodide/pyodide/pull/3080
https://github.com/pyodide/pyodide/pull/3080
https://github.com/pyodide/pyodide/pull/3085
https://github.com/pyodide/pyodide/pull/3015
https://github.com/pyodide/pyodide/pull/3088
https://github.com/pyodide/pyodide/pull/3101
https://github.com/pyodide/pyodide/issues/3003
https://github.com/pyodide/pyodide/pull/3013
https://github.com/pyodide/pyodide/issues/3011
https://github.com/pyodide/pyodide/pull/3014
https://github.com/pyodide/pyodide/pull/3015

Pyodide, Release 0.26.0.dev0

Version 0.21.1

August 22, 2022

• New packages: the standard library lzma module #2939

• Enhancement Pyodide now shows more helpful error messages when importing unvendored or removed stdlib
modules fails. #2973

• BREAKING CHANGE The default value of fullStdLib in loadPyodide has been changed to false. This
means Pyodide now will not load some stdlib modules like distutils, ssl, and sqlite3 by default. See Pyodide
Python compatibility for detail. If fullStdLib is set to true, it will load all unvendored stdlib modules. How-
ever, setting fullStdLib to true will increase the initial Pyodide load time. So it is preferable to explicitly load
the required module. #2998

• Enhancement pyodide build now checks that the correct version of the Emscripten compiler is used. #2975,
#2990

• Fix Pyodide works in Safari v14 again. It was broken in v0.21.0 #2994

Version 0.21.0

August 9, 2022

See the release notes for a summary.

Build system

• Enhancement Emscripten was updated to Version 3.1.14 #2775, #2679, #2672

• Fix Fix building on macOS #2360 #2554

• Enhancement Update Typescript target to ES2017 to generate more modern Javascript code. #2471

• Enhancement We now put our built files into the dist directory rather than the build directory. #2387

• Fix The build will error out earlier if cmake or libtool are not installed. #2423

• Enhancement The platform tags of wheels now include the Emscripten version in them. This should help ensure
ABI compatibility if Emscripten wheels are distributed outside of the main Pyodide distribution. #2610

• Enhancement The build system now uses the sysconfigdata from the target Python rather than the host Python.
#2516

• Enhancement Pyodide now builds with -sWASM_BIGINT. #2643

• Enhancement Added cross-script key to the meta.yaml spec to allow executing custom logic in the cross
build environment. #2734

3.3. Project 203

https://github.com/pyodide/pyodide/pull/2939
https://github.com/pyodide/pyodide/pull/2973
https://pyodide.org/en/stable/usage/wasm-constraints.html
https://pyodide.org/en/stable/usage/wasm-constraints.html
https://github.com/pyodide/pyodide/pull/2998
https://github.com/pyodide/pyodide/pull/2975
https://github.com/pyodide/pyodide/pull/2990
https://github.com/pyodide/pyodide/pull/2994
https://blog.pyodide.org/posts/0.21-release/
https://github.com/pyodide/pyodide/pull/2775
https://github.com/pyodide/pyodide/pull/2679
https://github.com/pyodide/pyodide/pull/2672
https://github.com/pyodide/pyodide/issues/2360
https://github.com/pyodide/pyodide/pull/2554
https://github.com/pyodide/pyodide/pull/2471
https://github.com/pyodide/pyodide/pull/2387
https://github.com/pyodide/pyodide/pull/2423
https://github.com/pyodide/pyodide/pull/2610
https://github.com/pyodide/pyodide/pull/2516
https://github.com/pyodide/pyodide/pull/2643
https://github.com/pyodide/pyodide/pull/2734

Pyodide, Release 0.26.0.dev0

Pyodide Module and type conversions

• API Change All functions were moved out of the root pyodide package into various submodules. For backwards
compatibility, they will be available from the root package (raising a FutureWarning) until v0.23.0. #2787,
#2790

• Enhancement loadPyodide no longer uses any global state, so it can be used more than once in the same thread.
This is recommended if a network request causes a loading failure, if there is a fatal error, if you damage the state
of the runtime so badly that it is no longer usable, or for certain testing purposes. It is not recommended for
creating multiple execution environments, for which you should use pyodide.runPython(code, { globals
: some_dict}); #2391

• Enhancement pyodide.unpackArchive now accepts any ArrayBufferView or ArrayBuffer as first argu-
ment, rather than only a Uint8Array. #2451

• Feature Added pyodide.code.run_js API. #2426

• Fix BigInt’s between 2^{32*n - 1} and 2^{32*n} no longer get translated to negative Python ints. #2484

• Fix Pyodide now correctly handles JavaScript objects with null constructor. #2520

• Fix Fix garbage collection of once_callable #2401

• Enhancement Added the js_id attribute to JsProxy to allow using JavaScript object identity as a dictionary
key. #2515

• Fix Fixed a bug with toJs when used with recursive structures and the dictConverter argument. #2533

• Enhancement Added Python wrappers set_timeout, clear_timeout, set_interval, clear_interval,
add_event_listener and remove_event_listener for the corresponding JavaScript functions. #2456

• Fix If a request fails due to CORS, pyfetch now raises an OSError not a JSException. #2598

• Enhancement Pyodide now directly exposes the Emscripten PATH and ERRNO_CODES APIs. #2582

• Fix The bool operator on a JsProxy now behaves more consistently: it returns False if JavaScript would say
that !!x is false, or if x is an empty container. Otherwise it returns True. #2803

• Fix Fix loadPyodide errors for the Windows Node environment. #2888

• Enhancement Implemented slice subscripting, +=, and extend for JsProxy of Javascript arrays. #2907

REPL

• Enhancement Add a spinner while the REPL is loading #2635

• Enhancement Cursor blinking in the REPL can be disabled by setting noblink in URL search params. #2666

• Fix Fix a REPL error in printing high-dimensional lists. #2517 #2919

• Fix Fix output bug with using input() on online console #2509

204 Chapter 3. Table of contents

https://github.com/pyodide/pyodide/pull/2787
https://github.com/pyodide/pyodide/pull/2790
https://github.com/pyodide/pyodide/pull/2391
https://github.com/pyodide/pyodide/pull/2451
https://github.com/pyodide/pyodide/pull/2426
https://github.com/pyodide/pyodide/pull/2484
https://github.com/pyodide/pyodide/pull/2520
https://github.com/pyodide/pyodide/pull/2401
https://github.com/pyodide/pyodide/pull/2515
https://github.com/pyodide/pyodide/pull/2533
https://github.com/pyodide/pyodide/pull/2456
https://github.com/pyodide/pyodide/pull/2598
https://github.com/pyodide/pyodide/pull/2582
https://github.com/pyodide/pyodide/pull/2803
https://github.com/pyodide/pyodide/pull/2888
https://github.com/pyodide/pyodide/pull/2907
https://github.com/pyodide/pyodide/pull/2635
https://github.com/pyodide/pyodide/pull/2666
https://github.com/pyodide/pyodide/pull/2517
https://github.com/pyodide/pyodide/pull/2919
https://github.com/pyodide/pyodide/pull/2509

Pyodide, Release 0.26.0.dev0

micropip and package loading

• API Change packages.json which contains the dependency graph for packages was renamed to repodata.
json to avoid confusion with package.json used in JavaScript packages.

• Enhancement Added SHA-256 hash of package to entries in repodata.json #2455

• Enhancement Integrity of Pyodide packages is now verified before loading them. This is for now limited to
browser environments. #2513

• Enhancement micropip supports loading wheels from the Emscripten file system using the emfs: protocol
now. #2767

• Enhancement It is now possible to use an alternate repodata.json lockfile by passing the lockFileURL option
to loadPyodide. This is particularly intended to be used with micropip.freeze. #2645

• Fix micropip now correctly handles package names that include dashes #2414

• Enhancement Allow passing credentials to micropip.install() #2458

• Enhancement micropip.install() now accepts a deps parameter. If set to False, micropip will not install
dependencies of the package. #2433

• Fix micropip now correctly compares packages with prerelease version #2532

• Enhancement micropip.install() now accepts a pre parameter. If set to True, micropip will include pre-
release and development versions. #2542

• Enhancement micropip was refactored to improve readability and ease of maintenance. #2561, #2563, #2564,
#2565, #2568

• Enhancement Various error messages were fine tuned and improved. #2562, #2558

• Enhancement micropip was adjusted to keep its state in the wheel .dist-info directories which improves
consistenency with the Python standard library and other tools used to install packages. #2572

• Enhancement micropip can now be used to install Emscripten binary wheels. #2591

• Enhancement Added micropip.freeze to record the current set of loaded packages into a repodata.json
file. #2581

• Fix micropip.list now works correctly when there are packages that are installed via pyodide.loadPackage
from a custom URL. #2743

• Fix micropip now skips package versions which do not follow PEP440. #2754

• Fix micropip supports extra markers in packages correctly now. #2584

Packages

• Enhancement Update sqlite version to latest stable release #2477 and #2518

• Enhancement Pillow now supports WEBP image format #2407.

• Enhancement Pillow and opencv-python now support the TIFF image format. #2762

• Pandas is now compiled with -Oz, which significantly speeds up loading the library on Chrome #2457

• New packages: opencv-python #2305, ffmpeg #2305, libwebp #2305, h5py, pkgconfig and libhdf5 #2411, bitar-
ray #2459, gsw #2511, cftime #2504, svgwrite, jsonschema, tskit #2506, xarray #2538, demes, libgsl, newick,
ruamel, msprime #2548, gmpy2 #2665, xgboost #2537, galpy #2676, shapely, geos #2725, suitesparse, sparseqr
#2685, libtiff #2762, pytest-benchmark #2799, termcolor #2809, sqlite3, libproj, pyproj, certifi #2555, rebound
#2868, reboundx #2909, pyclipper #2886, brotli #2925, python-magic #2941

3.3. Project 205

https://github.com/pyodide/pyodide/pull/2455
https://github.com/pyodide/pyodide/pull/2513
https://github.com/pyodide/pyodide/pull/2767
https://github.com/pyodide/pyodide/pull/2645
https://github.com/pyodide/pyodide/pull/2414
https://github.com/pyodide/pyodide/pull/2458
https://micropip.pyodide.org/en/v0.2.2/project/api.html#micropip.install
https://github.com/pyodide/pyodide/pull/2433
https://github.com/pyodide/pyodide/pull/2532
https://micropip.pyodide.org/en/v0.2.2/project/api.html#micropip.install
https://github.com/pyodide/pyodide/pull/2542
https://github.com/pyodide/pyodide/pull/2561
https://github.com/pyodide/pyodide/pull/2563
https://github.com/pyodide/pyodide/pull/2564
https://github.com/pyodide/pyodide/pull/2565
https://github.com/pyodide/pyodide/pull/2568
https://github.com/pyodide/pyodide/pull/2562
https://github.com/pyodide/pyodide/pull/2558
https://github.com/pyodide/pyodide/pull/2572
https://github.com/pyodide/pyodide/pull/2591
https://github.com/pyodide/pyodide/pull/2581
https://github.com/pyodide/pyodide/pull/2743
https://github.com/pyodide/pyodide/pull/2754
https://github.com/pyodide/pyodide/pull/2584
https://github.com/pyodide/pyodide/pull/2477
https://github.com/pyodide/pyodide/pull/2518
https://github.com/pyodide/pyodide/pull/2407
https://github.com/pyodide/pyodide/pull/2762
https://github.com/pyodide/pyodide/pull/2457
https://github.com/pyodide/pyodide/pull/2305
https://github.com/pyodide/pyodide/pull/2305
https://github.com/pyodide/pyodide/pull/2305
https://github.com/pyodide/pyodide/pull/2411
https://github.com/pyodide/pyodide/pull/2459
https://github.com/pyodide/pyodide/pull/2511
https://github.com/pyodide/pyodide/pull/2504
https://github.com/pyodide/pyodide/pull/2506
https://github.com/pyodide/pyodide/pull/2538
https://github.com/pyodide/pyodide/pull/2548
https://github.com/pyodide/pyodide/pull/2665
https://github.com/pyodide/pyodide/pull/2537
https://github.com/pyodide/pyodide/pull/2676
https://github.com/pyodide/pyodide/pull/2725
https://github.com/pyodide/pyodide/pull/2685
https://github.com/pyodide/pyodide/pull/2762
https://github.com/pyodide/pyodide/pull/2799
https://github.com/pyodide/pyodide/pull/2809
https://github.com/pyodide/pyodide/pull/2555
https://github.com/pyodide/pyodide/pull/2868
https://github.com/pyodide/pyodide/pull/2909
https://github.com/pyodide/pyodide/pull/2886
https://github.com/pyodide/pyodide/pull/2925
https://github.com/pyodide/pyodide/pull/2941

Pyodide, Release 0.26.0.dev0

Miscellaneous

• Fix We now tell packagers (e.g., Webpack) to ignore npm-specific imports when packing files for the browser.
#2468

• Enhancement run_in_pyodide now has support for pytest assertion rewriting and decorators such as pytest.
mark.parametrize and hypothesis. #2510, #2541

• BREAKING CHANGE pyodide_build.testing is removed. run_in_pyodide decorator can now be ac-
cessed through pytest-pyodide package. #2418

List of contributors

Alexey Ignatiev, Andrey Smelter, andrzej, Antonio Cuni, Ben Jeffery, Brian Benjamin Maranville, David Lechner, drag-
oncoder047, echorand (Amit Saha), Filipe, Frank, Gyeongjae Choi, Hanno Rein, haoran1062, Henry Schreiner, Hood
Chatham, Jason Grout, jmdyck, Jo Bovy, John Wason, josephrocca, Kyle Cutler, Lester Fan, Liumeo, lukemarsden,
Mario Gersbach, Matt Toad, Michael Droettboom, Michael Gilbert, Michael Neil, Mu-Tsun Tsai, Nicholas Bollweg,
pysathq, Ricardo Prins, Rob Gries, Roman Yurchak, Ryan May, Ryan Russell, stonebig, Szymswiat, Tobias Megies,
Vic Kumar, Victor, Wei Ji, Will Lachance

Version 0.20.0

April 9th, 2022

See the release notes for a summary.

CPython and stdlib

• Update Pyodide now runs Python 3.10.2. #2225

• Enhancement All ctypes tests pass now except for test_callback_too_many_args (and we have a plan to
fix test_callback_too_many_args upstream). libffi-emscripten now also passes all libffi tests. #2350

Packages

• Fix matplotlib now loads multiple fonts correctly #2271

• New packages: boost-histogram #2174, cryptography v3.3.2 #2263, the standard library ssl module #2263,
python-solvespace v3.0.7, lazy-object-proxy #2320.

• Many more scipy linking errors were fixed, mostly related to the Fortran f2c ABI for string arguments. There
are still some fatal errors in the Scipy test suite, but none seem to be simple linker errors. #2289

• Removed pyodide-interrupts. If you were using this for some reason, use pyodide.setInterruptBuffer
instead. #2309

• Most included packages were updated to the latest version. See Packages built in Pyodide for a full list.

206 Chapter 3. Table of contents

https://github.com/pyodide/pyodide/pull/2468
https://github.com/pyodide/pyodide/pull/2510
https://github.com/pyodide/pyodide/pull/2541
https://github.com/pyodide/pytest-pyodide
https://github.com/pyodide/pyodide/pull/2418
https://blog.pyodide.org/posts/0.20-release/
https://github.com/pyodide/pyodide/pull/2225
https://github.com/pyodide/pyodide/pull/2350
https://github.com/pyodide/pyodide/pull/2271
https://github.com/pyodide/pyodide/pull/2174
https://github.com/pyodide/pyodide/pull/2263
https://github.com/pyodide/pyodide/pull/2263
https://github.com/pyodide/pyodide/pull/2320
https://github.com/pyodide/pyodide/pull/2289
https://github.com/pyodide/pyodide/pull/2309

Pyodide, Release 0.26.0.dev0

Type translations

• Fix Python tracebacks now include Javascript frames when Python calls a Javascript function. #2123

• Enhancement Added a default_converter argument to JsProxy.to_py and pyodide.toPy which is used
to process any object that doesn’t have a built-in conversion to Python. Also added a default_converter
argument to PyProxy.toJs and pyodide.ffi.to_js to convert. #2170 and #2208

• Enhancement Async Python functions called from Javascript now have the resulting coroutine automatically
scheduled. For instance, this makes it possible to use an async Python function as a Javascript event handler.
#2319

Javascript package

• Enhancement It is no longer necessary to provide indexURL to loadPyodide. #2292

• BREAKING CHANGE The globals argument to pyodide.runPython and pyodide.runPythonAsync is
now passed as a named argument. The old usage still works with a deprecation warning. #2300

• Enhancement The Javascript package was migrated to Typescript. #2130 and #2133

• Fix Fix importing pyodide with ESM syntax in a module type web worker. #2220

• Enhancement When Pyodide is loaded as an ES6 module, no global loadPyodide variable is created (instead,
it should be accessed as an attribute on the module). #2249

• Fix The type Py2JsResult has been replaced with any which is more accurate. For backwards compatibility,
we still export Py2JsResult as an alias for any. #2277

• Fix Pyodide now loads correctly even if requirejs is included. #2283

• Enhancement Added robust handling for non-Error objects thrown by Javascript code. This mostly should
never happen since well behaved Javascript code ought to throw errors. But it’s better not to completely crash if
it throws something else. #2294

pyodide_build

• Enhancement Pyodide now uses Python wheel files to distribute packages rather than the emscripten
file_packager.py format. #2027

• Enhancement Pyodide now uses pypa/build to build packages. We (mostly) use build isolation, so we can
build packages that require conflicting versions of setuptools or alternative build backends. #2272

• Enhancement Most pure Python packages were switched to use the wheels directly from PyPI rather than re-
building them. #2126

• Enhancement Added support for C++ exceptions in packages. Now C++ extensions compiled and linked with
-fexceptions can catch C++ exceptions. Furthermore, uncaught C++ exceptions will be formatted in a human-
readable way. #2178

• BREAKING CHANGE Removed the skip-host key from the meta.yaml format. If needed, install a host copy
of the package with pip instead. #2256

3.3. Project 207

https://github.com/pyodide/pyodide/pull/2123
https://github.com/pyodide/pyodide/pull/2170
https://github.com/pyodide/pyodide/pull/2208
https://github.com/pyodide/pyodide/pull/2319
https://github.com/pyodide/pyodide/pull/2292
https://github.com/pyodide/pyodide/pull/2300
https://github.com/pyodide/pyodide/pull/2130
https://github.com/pyodide/pyodide/pull/2133
https://github.com/pyodide/pyodide/pull/2220
https://github.com/pyodide/pyodide/pull/2249
https://github.com/pyodide/pyodide/pull/2277
https://github.com/pyodide/pyodide/pull/2283
https://github.com/pyodide/pyodide/pull/2294
https://github.com/pyodide/pyodide/pull/2027
https://github.com/pyodide/pyodide/pull/2272
https://github.com/pyodide/pyodide/pull/2126
https://github.com/pyodide/pyodide/pull/2178
https://github.com/pyodide/pyodide/pull/2256

Pyodide, Release 0.26.0.dev0

Uncategorized

• Enhancement The interrupt buffer can be used to raise all 64 signals now, not just SIGINT. Write a number
between 1<= signum <= 64 into the interrupt buffer to trigger the corresponding signal. By default everything
but SIGINT will be ignored. Any value written into the interrupt buffer outside of the range from 1 to 64 will be
silently discarded. #2301

• Enhancement Updated to Emscripten 2.0.27. #2295

• BREAKING CHANGE The extractDir argument to pyodide.unpackArchive is now passed as a named
argument. The old usage still works with a deprecation warning. #2300

• Enhancement Support ANSI escape codes in the Pyodide console. #2345

• Fix pyodide_build can now be installed in non-editable ways. #2351

List of contributors

Boris Feld, Christian Staudt, Gabriel Fougeron, Gyeongjae Choi, Henry Schreiner, Hood Chatham, Jo Bovy,
Karthikeyan Singaravelan, Leo Psidom, Liumeo, Luka Mamukashvili, Madhur Tandon, Paul Korzhyk, Roman Yur-
chak, Seungmin Kim, Thorsten Beier, Tom White, and Will Lachance

Version 0.19.1

February 19, 2022

Packages

• New packages: sqlalchemy #2112, pydantic #2117, wrapt #2165

• Update Upgraded packages: pyb2d (0.7.2), #2117

• Fix A fatal error in scipy.stats.binom.ppf has been fixed. #2109

• Fix Type signature mismatches in some numpy comparators have been fixed. #2110

Type translations

• Fix The “PyProxy has already been destroyed” error message has been improved with some context information.
#2121

REPL

• Enhancement Pressing TAB in REPL no longer triggers completion when input is whitespace. #2125

208 Chapter 3. Table of contents

https://github.com/pyodide/pyodide/pull/2301
https://github.com/pyodide/pyodide/pull/2295
https://github.com/pyodide/pyodide/pull/2300
https://github.com/pyodide/pyodide/pull/2345
https://github.com/pyodide/pyodide/pull/2351
https://github.com/pyodide/pyodide/pull/2112
https://github.com/pyodide/pyodide/pull/2117
https://github.com/pyodide/pyodide/pull/2165
https://github.com/pyodide/pyodide/pull/2117
https://github.com/pyodide/pyodide/pull/2109
https://github.com/pyodide/pyodide/pull/2110
https://github.com/pyodide/pyodide/pull/2121
https://github.com/pyodide/pyodide/pull/2125

Pyodide, Release 0.26.0.dev0

List of contributors

Christian Staudt, Gyeongjae Choi, Hood Chatham, Liumeo, Paul Korzhyk, Roman Yurchak, Seungmin Kim, Thorsten
Beier

Version 0.19.0

January 10, 2021

See the release notes for a summary.

Python package

• Enhancement If find_imports is used on code that contains a syntax error, it will return an empty list instead
of raising a SyntaxError. #1819

• Enhancement Added the pyodide.http.pyfetchAPI which provides a convenience wrapper for the Javascript
fetchAPI. The API returns a response object with various methods that convert the data into various types while
minimizing the number of times the data is copied. #1865

• Enhancement Added the unpack_archive API to the pyodide.http.FetchResponse object which treats the
response body as an archive and uses shutil to unpack it. #1935

• Fix The Pyodide event loop now works correctly with cancelled handles. In particular, asyncio.wait_for now
functions as expected. #2022

JavaScript package

• Fix loadPyodide no longer fails in the presence of a user-defined global named process. #1849

• Fix Various webpack buildtime and runtime compatibility issues were fixed. #1900

• Enhancement Added the pyodide.pyimportAPI to import a Python module and return it as a PyProxy. Warn-
ing: this is different from the original pyimport API which was removed in this version. #1944

• Enhancement Added the pyodide.unpackArchive API which unpacks an archive represented as an Array-
Buffer into the working directory. This is intended as a way to install packages from a local application. #1944

• API Change loadPyodide now accepts a homedir parameter which sets home directory of Pyodide virtual file
system. #1936

• BREAKING CHANGE The default working directory(home directory) inside the Pyodide virtual file system has
been changed from / to /home/pyodide. To get the previous behavior, you can

– call os.chdir("/") in Python to change working directory or

– call loadPyodide with the homedir="/" argument #1936

3.3. Project 209

https://blog.pyodide.org/posts/0.19-release/
https://github.com/pyodide/pyodide/pull/1819
https://github.com/pyodide/pyodide/pull/1865
https://github.com/pyodide/pyodide/pull/1935
https://github.com/pyodide/pyodide/pull/2022
https://github.com/pyodide/pyodide/pull/1849
https://github.com/pyodide/pyodide/pull/1900
https://github.com/pyodide/pyodide/pull/1944
https://github.com/pyodide/pyodide/pull/1944
https://github.com/pyodide/pyodide/pull/1936
https://github.com/pyodide/pyodide/pull/1936

Pyodide, Release 0.26.0.dev0

Python / JavaScript type conversions

• BREAKING CHANGE Updated the calling convention when a JavaScript function is called from Python to
improve memory management of PyProxies. PyProxy arguments and return values are automatically destroyed
when the function is finished. #1573

• Enhancement Added JsProxy.to_string, JsProxy.to_bytes, and JsProxy.to_memoryview to allow for
conversion of TypedArray to standard Python types without unneeded copies. #1864

• Enhancement Added JsProxy.to_file and JsProxy.from_file to allow reading and writing Javascript
buffers to files as a byte stream without unneeded copies. #1864

• Fix It is now possible to destroy a borrowed attribute PyProxy of a PyProxy (as introduced by #1636) before
destroying the root PyProxy. #1854

• Fix If __iter__() raises an error, it is now handled correctly by the PyProxy[Symbol.iterator()] method.
#1871

• Fix Borrowed attribute PyProxys are no longer destroyed when the root PyProxy is garbage collected (because
it was leaked). Doing so has no benefit to nonleaky code and turns some leaky code into broken code (see #1855
for an example). #1870

• Fix Improved the way that pyodide.globals.get("builtin_name") works. Before we used __main__.
__dict__.update(builtins.__dict__) which led to several undesirable effects such as __name__ being
equal to "builtins". Now we use a proxy wrapper to replace pyodide.globals.get with a function that
looks up the name on builtins if lookup on globals fails. #1905

• Enhancement Coroutines have their memory managed in a more convenient way. In particular, now it is only
necessary to either await the coroutine or call one of .then, .except or .finally to prevent a leak. It is no
longer necessary to manually destroy the coroutine. Example: before:

async function runPythonAsync(code, globals) {
let coroutine = Module.pyodide_py.eval_code_async(code, globals);
try {
return await coroutine;

} finally {
coroutine.destroy();

}
}

After:

async function runPythonAsync(code, globals) {
return await Module.pyodide_py.eval_code_async(code, globals);

}

#2030

210 Chapter 3. Table of contents

https://github.com/pyodide/pyodide/pull/1573
https://github.com/pyodide/pyodide/pull/1864
https://github.com/pyodide/pyodide/pull/1864
https://github.com/pyodide/pyodide/pull/1636
https://github.com/pyodide/pyodide/pull/1854
https://github.com/pyodide/pyodide/pull/1871
https://github.com/pyodide/pyodide/issues/1855
https://github.com/pyodide/pyodide/pull/1870
https://github.com/pyodide/pyodide/pull/1905
https://github.com/pyodide/pyodide/pull/2030

Pyodide, Release 0.26.0.dev0

pyodide-build

• API Change By default only a minimal set of packages is built. To build all packages set
PYODIDE_PACKAGES='*' In addition, make minimal was removed, since it is now equivalent to make without
extra arguments. #1801

• Enhancement It is now possible to use pyodide-build buildall and pyodide-build buildpkg directly.
#2063

• Enhancement Added a --force-rebuild flag to buildall and buildpkg which rebuilds the package even if
it looks like it doesn’t need to be rebuilt. Added a --continue flag which keeps the same source tree for the
package and can continue from the middle of a build. #2069

• Enhancement Changes to environment variables in the build script are now seen in the compile and post build
scripts. #1706

• Fix Fix usability issues with pyodide-build mkpkg CLI. #1828

• Enhancement Better support for ccache when building Pyodide #1805

• Fix Fix compile error wasm-ld: error: unknown argument: --sort-common and wasm-ld:
error: unknown argument: --as-needed in ArchLinux. #1965

micropip

• Fix micropip now raises an error when installing a non-pure python wheel directly from a url. #1859

• Enhancement micropip.install() now accepts a keep_going parameter. If set to True, micropip reports
all identifiable dependencies that don’t have pure Python wheels, instead of failing after processing the first one.
#1976

• Enhancement Added a new API micropip.list() which returns the list of installed packages by micropip.
#2012

Packages

• Enhancement Unit tests are now unvendored from Python packages and included in a separate package <package
name>-tests. This results in a 20% size reduction on average for packages that vendor tests (e.g. numpy, pandas,
scipy). #1832

• Update Upgraded SciPy to 1.7.3. There are known issues with some SciPy components, the current status of the
scipy test suite is here #2065

• Fix The built-in pwd module of Python, which provides a Unix specific feature, is now unvendored. #1883

• Fix pillow and imageio now correctly encode/decode grayscale and black-and-white JPEG images. #2028

• Fix The numpy fft module now works correctly. #2028

• New packages: logbook #1920, pyb2d #1968, and threadpoolctl (a dependency of scikit-learn) #2065

• Upgraded packages: numpy (1.21.4) #1934, scikit-learn (1.0.2) #2065, scikit-image (0.19.1) #2005, msgpack
(1.0.3) #2071, astropy (5.0.3) #2086, statsmodels (0.13.1) #2073, pillow (9.0.0) #2085. This list is not exhaustive,
refer to packages.json for the full list.

3.3. Project 211

https://github.com/pyodide/pyodide/pull/1801
https://github.com/pyodide/pyodide/pull/2063
https://github.com/pyodide/pyodide/pull/2069
https://github.com/pyodide/pyodide/pull/1706
https://github.com/pyodide/pyodide/pull/1828
https://github.com/pyodide/pyodide/pull/1805
https://github.com/pyodide/pyodide/pull/1965
https://github.com/pyodide/pyodide/pull/1859
https://micropip.pyodide.org/en/v0.2.2/project/api.html#micropip.install
https://github.com/pyodide/pyodide/pull/1976
https://micropip.pyodide.org/en/v0.2.2/project/api.html#micropip.list
https://github.com/pyodide/pyodide/pull/2012
https://github.com/pyodide/pyodide/pull/1832
https://github.com/pyodide/pyodide/pull/2065#issuecomment-1004243045
https://github.com/pyodide/pyodide/pull/2065
https://github.com/pyodide/pyodide/pull/1883
https://github.com/pyodide/pyodide/pull/2028
https://github.com/pyodide/pyodide/pull/2028
https://github.com/pyodide/pyodide/pull/1920
https://github.com/pyodide/pyodide/pull/1968
https://github.com/pyodide/pyodide/pull/2065
https://github.com/pyodide/pyodide/pull/1934
https://github.com/pyodide/pyodide/pull/2065
https://github.com/pyodide/pyodide/pull/2005
https://github.com/pyodide/pyodide/pull/2071
https://github.com/pyodide/pyodide/pull/2086
https://github.com/pyodide/pyodide/pull/2073
https://github.com/pyodide/pyodide/pull/2085

Pyodide, Release 0.26.0.dev0

Uncategorized

• Enhancement PyErr_CheckSignals now works with the keyboard interrupt system so that cooperative C ex-
tensions can be interrupted. Also, added the pyodide.checkInterrupt function so Javascript code can opt to
be interrupted. #1294

• Fix The _ variable is now set by the Pyodide repl just like it is set in the native Python repl. #1904

• Enhancement pyodide-env and pyodideDocker images are now available from both the Docker Hub and from
the Github Package registry. #1995

• Fix The console now correctly handles it when an object’s __repr__ function raises an exception. #2021

• Enhancement Removed the -s EMULATE_FUNCTION_POINTER_CASTS flag, yielding large benefits in speed,
stack usage, and code size. #2019

List of contributors

Alexey Ignatiev, Alex Hall, Bart Broere, Cyrille Bogaert, etienne, Grimmer, Grimmer Kang, Gyeongjae Choi, Hao
Zhang, Hood Chatham, Ian Clester, Jan Max Meyer, LeoPsidom, Liumeo, Michael Christensen, Owen Ou, Roman
Yurchak, Seungmin Kim, Sylvain, Thorsten Beier, Wei Ouyang, Will Lachance

Version 0.18.1

September 16, 2021

Console

• Fix Ctrl+C handling in console now works correctly with multiline input. New behavior more closely approxi-
mates the behavior of the native Python console. #1790

• Fix Fix the repr of Python objects (including lists and dicts) in console #1780

• Fix The “long output truncated” message now appears on a separate line as intended. #1814

• Fix The streams that are used to redirect stdin and stdout in the console now define isatty to return True. This
fixes pytest. #1822

Python package

• Fix Avoid circular references when runsource raises SyntaxError #1758

JavaScript package

• Fix The pyodide.setInterruptBuffer command is now publicly exposed again, as it was in v0.17.0. #1797

212 Chapter 3. Table of contents

https://github.com/pyodide/pyodide/pull/1294
https://github.com/pyodide/pyodide/pull/1904
https://hub.docker.com/repository/docker/pyodide/pyodide-env
https://github.com/orgs/pyodide/packages
https://github.com/pyodide/pyodide/pull/1995
https://github.com/pyodide/pyodide/pull/2021
https://github.com/pyodide/pyodide/pull/2019
https://github.com/pyodide/pyodide/pull/1790
https://github.com/pyodide/pyodide/pull/1780
https://github.com/pyodide/pyodide/pull/1814
https://github.com/pyodide/pyodide/pull/1822
https://github.com/pyodide/pyodide/pull/1758
https://github.com/pyodide/pyodide/pull/1797

Pyodide, Release 0.26.0.dev0

Python / JavaScript type conversions

• Fix Conversion of very large strings from JavaScript to Python works again. #1806

• Fix Fixed a use after free bug in the error handling code. #1816

Packages

• Fix pillow now correctly encodes/decodes RGB JPEG image format. #1818

Micellaneous

• Fix Patched emscripten to make the system calls to duplicate file descriptors closer to posix-compliant. In par-
ticular, this fixes the use of dup on pipes and temporary files, as needed by pytest. #1823

Version 0.18.0

August 3rd, 2021

General

• Update Pyodide now runs Python 3.9.5. #1637

• Enhancement Pyodide can experimentally be used in Node.js #1689

• Enhancement Pyodide now directly exposes the Emscripten filesystem API, allowing for direct manipulation of
the in-memory filesystem #1692

• Enhancement Pyodide’s support of emscripten file systems is expanded from the default MEMFS to include IDBFS,
NODEFS, PROXYFS, and WORKERFS, allowing for custom persistence strategies depending on execution environ-
ment #1596

• API Change The packages.json schema for Pyodide was redesigned for better compatibility with conda. #1700

• API Change run_docker no longer binds any port to the docker image by default. #1750

Standard library

• API Change The following standard library modules are now available as standalone packages

– distlib

They are loaded by default in loadPyodide, however this behavior can be disabled with the fullStdLib pa-
rameter set to false. All optional stdlib modules can then be loaded as needed with pyodide.loadPackage.
#1543

• Enhancement The standard library module audioop is now included, making the wave, sndhdr, aifc, and
sunau modules usable. #1623

• Enhancement Added support for ctypes. #1656

3.3. Project 213

https://github.com/pyodide/pyodide/pull/1806
https://github.com/pyodide/pyodide/pull/1816
https://github.com/pyodide/pyodide/pull/1818
https://github.com/pyodide/pyodide/pull/1823
https://github.com/pyodide/pyodide/pull/1637
https://github.com/pyodide/pyodide/pull/1689
https://emscripten.org/docs/api_reference/Filesystem-API.html
https://github.com/pyodide/pyodide/pull/1692
https://emscripten.org/docs/api_reference/Filesystem-API.html#file-systems
https://github.com/pyodide/pyodide/pull/1596
https://github.com/pyodide/pyodide/pull/1700
https://github.com/pyodide/pyodide/pull/1750
https://github.com/pyodide/pyodide/pull/1543
https://github.com/pyodide/pyodide/pull/1623
https://github.com/pyodide/pyodide/pull/1656

Pyodide, Release 0.26.0.dev0

JavaScript package

• Enhancement The Pyodide JavaScript package is released to npm under npmjs.com/package/pyodide #1762

• API Change loadPyodide no longer automatically stores the API into a global variable called pyodide. To get
old behavior, say globalThis.pyodide = await loadPyodide({...}). #1597

• Enhancement loadPyodide now accepts callback functions for stdin, stdout and stderr #1728

• Enhancement Pyodide now ships with first party typescript types for the entire JavaScript API (though no typings
are available for PyProxy fields). #1601

• Enhancement It is now possible to import Comlink objects into Pyodide after using pyodide.
registerComlink #1642

• Enhancement If a Python error occurs in a reentrant runPython call, the error will be propagated into
the outer runPython context as the original error type. This is particularly important if the error is a
KeyboardInterrupt. #1447

Python package

• Enhancement Added a new pyodide.code.CodeRunner API for finer control than eval_code and
eval_code_async. Designed with the needs of REPL implementations in mind. #1563

• Enhancement Added pyodide.console.Console class closely based on the Python standard library code.
InteractiveConsole but with support for top level await and stream redirection. Also added the subclass
pyodide.console.PyodideConsole which automatically uses pyodide.loadPackagesFromImports on
the code before running it. #1125, #1155, #1635

• Fix pyodide.code.eval_code_async no longer automatically awaits a returned coroutine or attempts to await
a returned generator object (which triggered an error). #1563

Python / JavaScript type conversions

• API Change pyodide.runPythonAsync no longer automatically calls pyodide.
loadPackagesFromImports. #1538.

• Enhancement Added the PyProxy.callKwargs method to allow using Python functions with keyword argu-
ments from JavaScript. #1539

• Enhancement Added the PyProxy.copy method. #1549 #1630

• API Change Updated the method resolution order on PyProxy. Performing a lookup on a PyProxy will prefer
to pick a method from the PyProxy api, if no such method is found, it will use getattr on the proxied object.
Prefixing a name with $ forces getattr. For instance, PyProxy.destroy now always refers to the method that
destroys the proxy, whereas PyProxy.$destroy refers to an attribute or method called destroy on the proxied
object. #1604

• API Change It is now possible to use Symbol keys with PyProxies. These Symbol keys put markers on the
PyProxy that can be used by external code. They will not currently be copied by PyProxy.copy. #1696

• Enhancement Memory management of PyProxy fields has been changed so that fields looked up on a PyProxy
are “borrowed” and have their lifetime attached to the base PyProxy. This is intended to allow for more idiomatic
usage. (See #1617.) #1636

• API Change The depth argument to toJs is now passed as an option, so toJs(n) in v0.17 changed to
toJs({depth : n}). Similarly, pyodide.toPy now takes depth as a named argument. Also to_js and
to_py only take depth as a keyword argument. #1721

214 Chapter 3. Table of contents

https://www.npmjs.com/package/pyodide
https://github.com/pyodide/pyodide/pull/1762
https://github.com/pyodide/pyodide/pull/1597
https://github.com/pyodide/pyodide/pull/1728
https://github.com/pyodide/pyodide/pull/1601
https://github.com/pyodide/pyodide/pull/1642
https://github.com/pyodide/pyodide/pull/1447
https://github.com/pyodide/pyodide/pull/1563
https://github.com/pyodide/pyodide/pull/1125
https://github.com/pyodide/pyodide/pull/1155
https://github.com/pyodide/pyodide/pull/1635
https://github.com/pyodide/pyodide/pull/1563
https://github.com/pyodide/pyodide/pull/1538
https://github.com/pyodide/pyodide/pull/1539
https://github.com/pyodide/pyodide/pull/1549
https://github.com/pyodide/pyodide/pull/1630
https://github.com/pyodide/pyodide/pull/1604
https://github.com/pyodide/pyodide/pull/1696
https://github.com/pyodide/pyodide/issues/1617
https://github.com/pyodide/pyodide/pull/1636
https://github.com/pyodide/pyodide/pull/1721

Pyodide, Release 0.26.0.dev0

• API Change PyProxy.toJs and pyodide.ffi.to_js now take an option pyproxies, if a JavaScript Array
is passed for this, then any proxies created during conversion will be placed into this array. This allows easy
cleanup later. The create_pyproxies option can be used to disable creation of pyproxies during conversion
(instead a ConversionError is raised). #1726

• API Change toJs and to_js now take an option dict_converter which will be called on a JavaScript iterable
of two-element Arrays as the final step of converting dictionaries. For instance, pass Object.fromEntries to
convert to an object or Array.from to convert to an array of pairs. #1742

pyodide-build

• API Change pyodide-build is now an installable Python package, with an identically named CLI entrypoint that
replaces bin/pyodide which is removed #1566

micropip

• Fix micropip now correctly handles packages that have mixed case names. (See #1614). #1615

• Enhancement micropip now resolves dependencies correctly for old versions of packages (it used to always use
the dependencies from the most recent version, see #1619 and #1745). micropip also will resolve dependencies
for wheels loaded from custom urls. #1753

Packages

• Enhancement matplotlib now comes with a new renderer based on the html5 canvas element. #1579 It is optional
and the current default backend is still the agg backend compiled to wasm.

• Enhancement Updated a number of packages included in Pyodide.

List of contributors

Albertas Gimbutas, Andreas Klostermann, Arfy Slowy, daoxian, Devin Neal, fuyutarow, Grimmer, Guido Zuidhof,
Gyeongjae Choi, Hood Chatham, Ian Clester, Itay Dafna, Jeremy Tuloup, jmsmdy, LinasNas, Madhur Tandon, Michael
Christensen, Nicholas Bollweg, Ondřej Staněk, Paul m. p. P, Piet Brömmel, Roman Yurchak, stefnotch, Syrus Akbary,
Teon L Brooks, Waldir

Version 0.17.0

April 21, 2021

See the 0-17-0-release-notes for more information.

3.3. Project 215

https://github.com/pyodide/pyodide/pull/1726
https://github.com/pyodide/pyodide/pull/1742
https://github.com/pyodide/pyodide/pull/1566
https://github.com/pyodide/pyodide/issues/1614
https://github.com/pyodide/pyodide/pull/1615
https://github.com/pyodide/pyodide/issues/1619
https://github.com/pyodide/pyodide/issues/1745
https://github.com/pyodide/pyodide/pull/1753
https://github.com/pyodide/pyodide/pull/1579

Pyodide, Release 0.26.0.dev0

Improvements to package loading and dynamic linking

• Enhancement Uses the emscripten preload plugin system to preload .so files in packages

• Enhancement Support for shared library packages. This is used for CLAPACK which makes scipy a lot smaller.
#1236

• Fix Pyodide and included packages can now be used with Safari v14+. Safari v13 has also been observed to work
on some (but not all) devices.

Python / JS type conversions

• Feature A JsProxy of a JavaScript Promise or other awaitable object is now a Python awaitable. #880

• API Change Instead of automatically converting Python lists and dicts into JavaScript, they are now wrapped in
PyProxy. Added a new PyProxy.toJs API to request the conversion behavior that used to be implicit. #1167

• API Change Added JsProxy.to_py API to convert a JavaScript object to Python. #1244

• Feature Flexible jsimports: it now possible to add custom Python “packages” backed by JavaScript code, like the
js package. The js package is now implemented using this system. #1146

• Feature A PyProxy of a Python coroutine or awaitable is now an awaitable JavaScript object. Awaiting a corou-
tine will schedule it to run on the Python event loop using asyncio.ensure_future. #1170

• Enhancement Made PyProxy of an iterable Python object an iterable Js object: defined the [Symbol.iterator]
method, can be used like for(let x of proxy). Made a PyProxy of a Python iterator an iterator: proxy.
next() is translated to next(it). Made a PyProxy of a Python generator into a JavaScript generator: proxy.
next(val) is translated to gen.send(val). #1180

• API Change Updated PyProxy so that if the wrapped Python object supports __getitem__ access, then the
wrapper has get, set, has, and delete methods which do obj[key], obj[key] = val, key in obj and
del obj[key] respectively. #1175

• API Change The pyodide.pyimport function is deprecated in favor of using pyodide.globals.get('key').
#1367

• API Change Added PyProxy.getBuffer API to allow direct access to Python buffers as JavaScript TypedAr-
rays. #1215

• API Change The innermost level of a buffer converted to JavaScript used to be a TypedArray if the buffer was
contiguous and otherwise an Array. Now the innermost level will be a TypedArray unless the buffer format code
is a ‘?’ in which case it will be an Array of booleans, or if the format code is a “s” in which case the innermost
level will be converted to a string. #1376

• Enhancement JavaScript BigInts are converted into Python int and Python ints larger than 2^53 are converted
into BigInt. #1407

• API Change Added pyodide.isPyProxy to test if an object is a PyProxy. #1456

• Enhancement PyProxy and PyBuffer objects are now garbage collected if the browser supports
FinalizationRegistry. #1306

• Enhancement Automatic conversion of JavaScript functions to CPython calling conventions. #1051, #1080

• Enhancement Automatic detection of fatal errors. In this case Pyodide will produce both a JavaScript and a
Python stack trace with explicit instruction to open a bug report. pr{1151}, pr{1390}, pr{1478}.

• Enhancement Systematic memory leak detection in the test suite and a large number of fixed to memory leaks.
pr{1340}

216 Chapter 3. Table of contents

https://github.com/pyodide/pyodide/pull/1236
https://github.com/pyodide/pyodide/pull/880
https://github.com/pyodide/pyodide/pull/1167
https://github.com/pyodide/pyodide/pull/1244
https://github.com/pyodide/pyodide/pull/1146
https://github.com/pyodide/pyodide/pull/1170
https://github.com/pyodide/pyodide/pull/1180
https://github.com/pyodide/pyodide/pull/1175
https://github.com/pyodide/pyodide/pull/1367
https://github.com/pyodide/pyodide/pull/1215
https://github.com/pyodide/pyodide/pull/1376
https://github.com/pyodide/pyodide/pull/1407
https://github.com/pyodide/pyodide/pull/1456
https://github.com/pyodide/pyodide/pull/1306
https://github.com/pyodide/pyodide/pull/1051
https://github.com/pyodide/pyodide/pull/1080

Pyodide, Release 0.26.0.dev0

• Fix getattr and dir on JsProxy now report consistent results and include all names defined on the Python dictionary
backing JsProxy. #1017

• Fix JsProxy.__bool__ now produces more consistent results: both bool(window) and
bool(zero-arg-callback) were False but now are True. Conversely, bool(empty_js_set) and
bool(empty_js_map) were True but now are False. #1061

• Fix When calling a JavaScript function from Python without keyword arguments, Pyodide no longer passes a
PyProxy-wrapped NULL pointer as the last argument. #1033

• Fix JsBoundMethod is now a subclass of JsProxy, which fixes nested attribute access and various other strange
bugs. #1124

• Fix JavaScript functions imported like from js import fetch no longer trigger “invalid invocation” errors
(issue #461) and js.fetch("some_url") also works now (issue #768). #1126

• Fix JavaScript bound method calls now work correctly with keyword arguments. #1138

• Fix JavaScript constructor calls now work correctly with keyword arguments. #1433

pyodide-py package

• Feature Added a Python event loop to support asyncio by scheduling coroutines to run as jobs on the browser
event loop. This event loop is available by default and automatically enabled by any relevant asyncio API, so for
instance asyncio.ensure_future works without any configuration. #1158

• API Change Removed as_nested_list API in favor of JsProxy.to_py. #1345

pyodide-js

• API Change Removed iodide-specific code in pyodide.js. This breaks compatibility with iodide. #878, #981

• API Change Removed the pyodide.autocomplete API, use Jedi directly instead. #1066

• API Change Removed pyodide.repr API. #1067

• Fix If messageCallback and errorCallback are supplied to pyodide.loadPackage, pyodide.
runPythonAsync and pyodide.loadPackagesFromImport, then the messages are no longer automatically
logged to the console.

• Feature runPythonAsync now runs the code with eval_code_async. In particular, it is possible to use top-
level await inside of runPythonAsync.

• eval_code now accepts separate globals and locals parameters. #1083

• Added the pyodide.setInterruptBuffer API. This can be used to set a SharedArrayBuffer to be the
keyboard interrupt buffer. If Pyodide is running on a webworker, the main thread can signal to the webworker
that it should raise a KeyboardInterrupt by writing to the interrupt buffer. #1148 and #1173

• Changed the loading method: added an async function loadPyodide to load Pyodide to use instead of
languagePluginURL and languagePluginLoader. The change is currently backwards compatible, but the
old approach is deprecated. #1363

• runPythonAsync now accepts globals parameter. #1914

3.3. Project 217

https://github.com/pyodide/pyodide/pull/1017
https://github.com/pyodide/pyodide/pull/1061
https://github.com/pyodide/pyodide/pull/1033
https://github.com/pyodide/pyodide/pull/1124
https://github.com/pyodide/pyodide/issues/461
https://github.com/pyodide/pyodide/issues/768
https://github.com/pyodide/pyodide/pull/1126
https://github.com/pyodide/pyodide/pull/1138
https://github.com/pyodide/pyodide/pull/1433
https://github.com/pyodide/pyodide/pull/1158
https://github.com/pyodide/pyodide/pull/1345
https://github.com/pyodide/pyodide/pull/878
https://github.com/pyodide/pyodide/pull/981
https://github.com/pyodide/pyodide/pull/1066
https://github.com/pyodide/pyodide/pull/1067
https://github.com/pyodide/pyodide/pull/1083
https://github.com/pyodide/pyodide/pull/1148
https://github.com/pyodide/pyodide/pull/1173
https://github.com/pyodide/pyodide/pull/1363
https://github.com/pyodide/pyodide/pull/1914

Pyodide, Release 0.26.0.dev0

micropip

• Feature micropip now supports installing wheels from relative URLs. #872

• API Change micropip.install now returns a Python Future instead of a JavaScript Promise. #1324

• Fix micropip.install now interacts correctly with pyodide.loadPackage(). #1457

• Fix micropip.install now handles version constraints correctly even if there is a version of the package
available from the Pyodide indexURL.

Build system

• Enhancement Updated to latest emscripten 2.0.13 with the upstream LLVM backend #1102

• API Change Use upstream file_packager.py, and stop checking package abi versions. The
PYODIDE_PACKAGE_ABI environment variable is no longer used, but is still set as some packages use it to detect
whether it is being built for Pyodide. This usage is deprecated, and a new environment variable PYODIDE is
introduced for this purpose.

As part of the change, Module.checkABI is no longer present. #991

• uglifyjs and lessc no longer need to be installed in the system during build #878.

• Enhancement Reduce the size of the core Pyodide package #987.

• Enhancement Optionally to disable docker port binding #1423.

• Enhancement Run arbitrary command in docker #1424

• Docker images for Pyodide are now accessible at pyodide/pyodide-env and pyodide/pyodide.

• Enhancement Option to run docker in non-interactive mode #1641

REPL

• Fix In console.html: sync behavior, full stdout/stderr support, clean namespace, bigger font, correct result rep-
resentation, clean traceback #1125 and #1141

• Fix Switched from Jedi to rlcompleter for completion in pyodide.console.InteractiveConsole and so in
console.html. This fixes some completion issues (see #821 and #1160)

• Enhancement Support top-level await in the console #1459

Packages

• six, jedi and parso are no longer vendored in the main Pyodide package, and need to be loaded explicitly #1010,
#987.

• Updated packages #1021, #1338, #1460.

• Added Plotly version 4.14.3 and retrying dependency #1419

218 Chapter 3. Table of contents

https://github.com/pyodide/pyodide/pull/872
https://github.com/pyodide/pyodide/pull/1324
https://github.com/pyodide/pyodide/pull/1457
https://github.com/pyodide/pyodide/pull/1102
https://github.com/pyodide/pyodide/pull/991
https://github.com/pyodide/pyodide/pull/878
https://github.com/pyodide/pyodide/pull/987
https://github.com/pyodide/pyodide/pull/1423
https://github.com/pyodide/pyodide/pull/1424
https://hub.docker.com/repository/docker/pyodide/pyodide-env
https://hub.docker.com/repository/docker/pyodide/pyodide
https://github.com/pyodide/pyodide/pull/1641
https://github.com/pyodide/pyodide/pull/1125
https://github.com/pyodide/pyodide/pull/1141
https://github.com/pyodide/pyodide/issues/821
https://github.com/pyodide/pyodide/issues/1160
https://github.com/pyodide/pyodide/pull/1459
https://github.com/pyodide/pyodide/pull/1010
https://github.com/pyodide/pyodide/pull/987
https://github.com/pyodide/pyodide/pull/1021
https://github.com/pyodide/pyodide/pull/1338
https://github.com/pyodide/pyodide/pull/1460
https://github.com/pyodide/pyodide/pull/1419

Pyodide, Release 0.26.0.dev0

List of contributors

(in alphabetic order)

Aditya Shankar, casatir, Dexter Chua, dmondev, Frederik Braun, Hood Chatham, Jan Max Meyer, Jeremy Tuloup,
joemarshall, leafjolt, Michael Greminger, Mireille Raad, Ondřej Staněk, Paul m. p. P, rdb, Roman Yurchak, Rudolfs

Version 0.16.1

December 25, 2020

Note: due to a CI deployment issue the 0.16.0 release was skipped and replaced by 0.16.1 with identical contents.

• Pyodide files are distributed by JsDelivr, https://cdn.jsdelivr.net/pyodide/v0.16.1/full/pyodide.
js The previous CDN pyodide-cdn2.iodide.io still works and there are no plans for deprecating it. However
please use JsDelivr as a more sustainable solution, including for earlier Pyodide versions.

Python and the standard library

• Pyodide includes CPython 3.8.2 #712

• ENH Patches for the threading module were removed in all packages. Importing the module, and a subset of
functionality (e.g. locks) works, while starting a new thread will produce an exception, as expected. #796. See
#237 for the current status of the threading support.

• ENH The multiprocessing module is now included, and will not fail at import, thus avoiding the necessity to patch
included packages. Starting a new process will produce an exception due to the limitation of the WebAssembly
VM with the following message: Resource temporarily unavailable #796.

Python / JS type conversions

• FIX Only call Py_INCREF() once when proxied by PyProxy #708

• JavaScript exceptions can now be raised and caught in Python. They are wrapped in pyodide.JsException. #891

pyodide-py package and micropip

• The pyodide.py file was transformed to a pyodide-py package. The imports remain the same so this change is
transparent to the users #909.

• FIX Get last version from PyPI when installing a module via micropip #846.

• Suppress REPL results returned by pyodide.eval_code by adding a semicolon #876.

• Enable monkey patching of eval_code and find_imports to customize behavior of runPython and
runPythonAsync #941.

3.3. Project 219

https://www.jsdelivr.com/
https://github.com/pyodide/pyodide/pull/712
https://github.com/pyodide/pyodide/pull/796
https://github.com/pyodide/pyodide/issues/237
https://github.com/pyodide/pyodide/pull/796
https://github.com/pyodide/pyodide/pull/708
https://github.com/pyodide/pyodide/pull/891
https://github.com/pyodide/pyodide/pull/909
https://github.com/pyodide/pyodide/pull/846
https://github.com/pyodide/pyodide/pull/876
https://github.com/pyodide/pyodide/pull/941

Pyodide, Release 0.26.0.dev0

Build system

• Updated docker image to Debian buster, resulting in smaller images. #815

• Pre-built docker images are now available as iodide-project/pyodide #787

• Host Python is no longer compiled, reducing compilation time. This also implies that Python 3.8 is now required
to build Pyodide. It can for instance be installed with conda. #830

• FIX Infer package tarball directory from source URL #687

• Updated to emscripten 1.38.44 and binaryen v86 (see related commits)

• Updated default --ldflags argument to pyodide_build scripts to equal what Pyodide actually uses. #817

• Replace C lz4 implementation with the (upstream) JavaScript implementation. #851

• Pyodide deployment URL can now be specified with the PYODIDE_BASE_URL environment variable during build.
The pyodide_dev.js is no longer distributed. To get an equivalent behavior with pyodide.js, set

window.languagePluginUrl = "./";

before loading it. #855

• Build runtime C libraries (e.g. libxml) via package build system with correct dependency resolution #927

• Pyodide can now be built in a conda virtual environment #835

Other improvements

• Modify MEMFS timestamp handling to support better caching. This in particular allows to import newly created
Python modules without invalidating import caches #893

Packages

• New packages: freesasa, lxml, python-sat, traits, astropy, pillow, scikit-image, imageio, numcodecs, msgpack,
asciitree, zarr

Note that due to the large size and the experimental state of the scipy package, packages that depend on scipy
(including scikit-image, scikit-learn) will take longer to load, use a lot of memory and may experience failures.

• Updated packages: numpy 1.15.4, pandas 1.0.5, matplotlib 3.3.3 among others.

• New package pyodide-interrupt, useful for handling interrupts in Pyodide (see project description for details).

Backward incompatible changes

• Dropped support for loading .wasm files with incorrect MIME type, following #851

220 Chapter 3. Table of contents

https://github.com/pyodide/pyodide/pull/815
https://hub.docker.com/r/iodide/pyodide
https://github.com/pyodide/pyodide/pull/787
https://github.com/pyodide/pyodide/pull/830
https://github.com/pyodide/pyodide/pull/687
https://github.com/pyodide/pyodide/search?q=emscripten&type=commits
https://github.com/pyodide/pyodide/pull/817
https://github.com/pyodide/pyodide/pull/851
https://github.com/pyodide/pyodide/pull/855
https://github.com/pyodide/pyodide/pull/927
https://github.com/pyodide/pyodide/pull/835
https://github.com/pyodide/pyodide/pull/893
https://pypi.org/project/pyodide-interrupts/
https://github.com/pyodide/pyodide/pull/851

Pyodide, Release 0.26.0.dev0

List of contributors

abolger, Aditya Shankar, Akshay Philar, Alexey Ignatiev, Aray Karjauv, casatir, chigozienri, Christian glacet, Dex-
ter Chua, Frithjof, Hood Chatham, Jan Max Meyer, Jay Harris, jcaesar, Joseph D. Long, Matthew Turk, Michael
Greminger, Michael Panchenko, mojighahar, Nicolas Ollinger, Ram Rachum, Roman Yurchak, Sergio, Seungmin Kim,
Shyam Saladi, smkm, Wei Ouyang

Version 0.15.0

May 19, 2020

• Upgrades Pyodide to CPython 3.7.4.

• micropip no longer uses a CORS proxy to install pure Python packages from PyPI. Packages are now installed
from PyPI directly.

• micropip can now be used from web workers.

• Adds support for installing pure Python wheels from arbitrary URLs with micropip.

• The CDN URL for Pyodide changed to https://pyodide-cdn2.iodide.io/v0.15.0/full/pyodide.js It now supports
versioning and should provide faster downloads. The latest release can be accessed via https://pyodide-
cdn2.iodide.io/latest/full/

• Adds messageCallback and errorCallback to pyodide.loadPackage.

• Reduces the initial memory footprint (TOTAL_MEMORY) from 1 GiB to 5 MiB. More memory will be allocated as
needed.

• When building from source, only a subset of packages can be built by setting the PYODIDE_PACKAGES environ-
ment variable. See partial builds documentation for more details.

• New packages: future, autograd

Version 0.14.3

Dec 11, 2019

• Convert JavaScript numbers containing integers, e.g. 3.0, to a real Python long (e.g. 3).

• Adds __bool__ method to for JsProxy objects.

• Adds a JavaScript-side auto completion function for Iodide that uses jedi.

• New packages: nltk, jeudi, statsmodels, regex, cytoolz, xlrd, uncertainties

Version 0.14.0

Aug 14, 2019

• The built-in sqlite and bz2 modules of Python are now enabled.

• Adds support for auto-completion based on jedi when used in iodide

3.3. Project 221

Pyodide, Release 0.26.0.dev0

Version 0.13.0

May 31, 2019

• Tagged versions of Pyodide are now deployed to Netlify.

Version 0.12.0

May 3, 2019

User improvements:

• Packages with pure Python wheels can now be loaded directly from PyPI. See micropip for more information.

• Thanks to PEP 562, you can now import js from Python and use it to access anything in the global JavaScript
namespace.

• Passing a Python object to JavaScript always creates the same object in JavaScript. This makes APIs like
removeEventListener usable.

• Calling dir() in Python on a JavaScript proxy now works.

• Passing an ArrayBuffer from JavaScript to Python now correctly creates a memoryview object.

• Pyodide now works on Safari.

Version 0.11.0

Apr 12, 2019

User improvements:

• Support for built-in modules:

– sqlite, crypt

• New packages: mne

Developer improvements:

• The mkpkg command will now select an appropriate archive to use, rather than just using the first.

• The included version of emscripten has been upgraded to 1.38.30 (plus a bugfix).

• New packages: jinja2, MarkupSafe

Version 0.10.0

Mar 21, 2019

User improvements:

• New packages: html5lib, pygments, beautifulsoup4, soupsieve, docutils, bleach, mne

Developer improvements:

• console.html provides a simple text-only interactive console to test local changes to Pyodide. The existing
notebooks based on legacy versions of Iodide have been removed.

• The run_docker script can now be configured with environment variables.

222 Chapter 3. Table of contents

Pyodide, Release 0.26.0.dev0

Pyodide Deprecation Timeline

Each Pyodide release may deprecate certain features from previous releases in a backward incompatible way. If a
feature is deprecated, it will continue to work until its removal, but raise warnings. We try to ensure deprecations are
done over at least two minor(feature) releases, however, as Pyodide is still in beta state, this list is subject to change and
some features can be removed without deprecation warnings. More details about each item can often be found in the
Change Log.

0.25.0

• Typescript type imports for PyProxy subtypes from pyodide will be removed.

• The methods PyProxy.supportsHas, PyProxy.isCallable, etc will be removed.

• Support for the homedir argument will be removed in favor of env: {HOME: "/the/home/directory"}.

0.24.0

• The messageCallback and errorCallback argument to loadPackage and loadPackagesFromImports
will be passed as a named argument only.

• Py2JsResult will be removed.

• The --output-directory argument to pyodide build will be removed.

0.23.0

• Names that used to be in the root pyodide module and were moved to submodules will no longer be available
in the root module.

• The “message” argument to PyProxy.destroy method will no longer be accepted as a positional argument.

0.21.0

• The globals argument to runPython and runPythonAsync will be passed as a named argument only.

• The extractDir argument to unpackArchive will be passed as a named argument only.

0.20.0

• The skip-host key will be removed from the meta.yaml format. If needed, install a host copy of the package with
pip instead.

• pyodide-interrupts module will be removed. If you were using this for some reason, use
setInterruptBuffer() instead.

3.3. Project 223

Pyodide, Release 0.26.0.dev0

0.19.0

• The default working directory (home directory) inside the Pyodide virtual file system has been changed from /
to /home/pyodide. To get the previous behavior, you can

– call os.chdir("/") in Python to change working directory or

– call loadPyodide() with the homedir="/" argument

• When a JavaScript function is called from Python, PyProxy arguments and return values will be automatically
destroyed when the function is finished.

3.3.6 Related Projects

WebAssembly ecosystem

• emscripten is the compiler toolchain for WebAssembly that made Pyodide possible.

Notebook environments, IDEs, and REPLs

• Iodide is a notebook-like environment for literate scientific computing and communication for the web. It is no
longer actively maintained. Historically, Pyodide started as plugin for iodide.

• Starboard notebook is an in-browser literal notebook runtime that uses Pyodide for Python.

• Basthon notebook is a static fork of Jupyter notebook with a Pyodide kernel (currently in French).

• JupyterLite is a JupyterLab distribution that runs entirely in the browser, based on Pyodide.

• futurecoder is an interactive Python course running on Pyodide. It includes an IDE with a REPL, debuggers, and
automatic installation of any imported packages supported by Pyodide’s micropip.

• PyRepl.io uses Pyodide for a Python interpreter in your browser. PyRepl is made for creating and sharing code
snippets. Embed interactive Python examples in your documentation, blog posts, presentations and more.

• marimo is a reactive notebook that is compatible with Pyodide with an online editor that runs entirely in the
browser. These notebooks can also run as standalone applications or embedded in blogs.

• quarto-pyodide uses Pyodide to create interactive code cells and documents within a variety of Quarto document
formats like HTML Documents, RevealJS, Books, and Websites.

Workarounds for common WASM and browser limitations

• pyodide-http Provides patches for widely used http libraries to make them work in Pyodide environments like
JupyterLite.

224 Chapter 3. Table of contents

https://emscripten.org/
https://github.com/iodide-project/iodide
https://github.com/gzuidhof/starboard-notebook
https://notebook.basthon.fr/
https://github.com/jupyterlite/jupyterlite
https://futurecoder.io/
https://futurecoder.io/course/#ide
https://pyrepl.io
https://github.com/marimo-team/marimo
https://marimo.app/
https://github.com/coatless-quarto/pyodide
https://quarto.org/
https://github.com/koenvo/pyodide-http

Pyodide, Release 0.26.0.dev0

Dashboards and visualization

• WebDash is a Plotly Dash distribution that runs entirely in the browser, using Pyodide.

• Flet is a UI framework for your Pyodide apps based on Flutter.

Other projects

• wc-code is a library to run JavaScript, Python, and Theme in the browser with inline code blocks. It uses Pyodide
to execute Python code.

• SymPy Beta is a fork of SymPy Gamma. It’s an in-browser answer engine with a Pyodide backend.

• react-py is a library that allows for easy integration of Pyodide in React applications. It provides convenient
hooks for running Python code.

3.3. Project 225

https://github.com/ibdafna/webdash
https://flet.dev
https://github.com/vanillawc/wc-code
https://github.com/eagleoflqj/sympy_beta
https://github.com/elilambnz/react-py

Pyodide, Release 0.26.0.dev0

226 Chapter 3. Table of contents

CHAPTER

FOUR

COMMUNICATION

• Blog: blog.pyodide.org

• Mailing list: mail.python.org/mailman3/lists/pyodide.python.org/

• Gitter: gitter.im/pyodide/community

• Twitter: twitter.com/pyodide

• Stack Overflow: stackoverflow.com/questions/tagged/pyodide

227

https://blog.pyodide.org/
https://mail.python.org/mailman3/lists/pyodide.python.org/
https://gitter.im/pyodide/community
https://twitter.com/pyodide
https://stackoverflow.com/questions/tagged/pyodide

Pyodide, Release 0.26.0.dev0

228 Chapter 4. Communication

PYTHON MODULE INDEX

p
pyodide.code, 88
pyodide.console, 94
pyodide.ffi, 99
pyodide.ffi.wrappers, 117
pyodide.http, 119
pyodide.webloop, 123

229

Pyodide, Release 0.26.0.dev0

230 Python Module Index

INDEX

Symbols
_PropagatePythonError() (class), 69
-C

pyodide-build command line option, 128
--base-path

pyodide-lockfile-add-wheels command
line option, 132

--build-dependencies
pyodide-build command line option, 127

--build-dir
pyodide-build-recipes command line

option, 128
pyodide-build-recipes-no-deps command

line option, 130
--cflags

pyodide-build-recipes command line
option, 129

pyodide-build-recipes-no-deps command
line option, 130

--compression-level
pyodide-build command line option, 128
pyodide-build-recipes command line

option, 129
pyodide-py-compile command line option,

133
--config-setting

pyodide-build command line option, 128
--continue

pyodide-build-recipes-no-deps command
line option, 131

--cxxflags
pyodide-build-recipes command line

option, 129
pyodide-build-recipes-no-deps command

line option, 130
--exports

pyodide-build command line option, 127
--force-rebuild

pyodide-build-recipes command line
option, 129

pyodide-build-recipes-no-deps command
line option, 130

--host-install-dir
pyodide-build-recipes command line

option, 129
pyodide-build-recipes-no-deps command

line option, 130
--ignore-missing-dependencies

pyodide-lockfile-add-wheels command
line option, 132

--input
pyodide-lockfile-add-wheels command

line option, 132
--install

pyodide-build-recipes command line
option, 128

--install-dir
pyodide-build-recipes command line

option, 128
--keep

pyodide-py-compile command line option,
133

--ldflags
pyodide-build-recipes command line

option, 129
pyodide-build-recipes-no-deps command

line option, 130
--libdir

pyodide-auditwheel-copy command line
option, 125

pyodide-auditwheel-repair command line
option, 126

--log-dir
pyodide-build-recipes command line

option, 129
--metadata-files

pyodide-build-recipes command line
option, 128

--n-jobs
pyodide-build-recipes command line

option, 129
--no-build-dependencies

pyodide-build command line option, 127
--no-deps

231

Pyodide, Release 0.26.0.dev0

pyodide-build-recipes command line
option, 129

--no-force-rebuild
pyodide-build-recipes command line

option, 129
pyodide-build-recipes-no-deps command

line option, 130
--no-ignore-missing-dependencies

pyodide-lockfile-add-wheels command
line option, 132

--no-install
pyodide-build-recipes command line

option, 128
--no-keep

pyodide-py-compile command line option,
133

--no-metadata-files
pyodide-build-recipes command line

option, 128
--no-no-deps

pyodide-build-recipes command line
option, 129

--no-show-type
pyodide-auditwheel-exports command line

option, 125
pyodide-auditwheel-imports command line

option, 126
--no-silent

pyodide-py-compile command line option,
133

--no-skip-built-in-packages
pyodide-build command line option, 127

--outdir
pyodide-build command line option, 127

--output
pyodide-lockfile-add-wheels command

line option, 132
--output-dir

pyodide-auditwheel-copy command line
option, 125

pyodide-auditwheel-repair command line
option, 126

--output-lockfile
pyodide-build command line option, 127

--recipe-dir
pyodide-build-recipes command line

option, 128
pyodide-build-recipes-no-deps command

line option, 130
pyodide-skeleton-pypi command line

option, 134
--requirements

pyodide-build command line option, 127
--show-type

pyodide-auditwheel-exports command line
option, 125

pyodide-auditwheel-imports command line
option, 126

--silent
pyodide-py-compile command line option,

133
--skip-built-in-packages

pyodide-build command line option, 127
--skip-dependency

pyodide-build command line option, 127
--source-format

pyodide-skeleton-pypi command line
option, 134

--target-install-dir
pyodide-build-recipes command line

option, 129
pyodide-build-recipes-no-deps command

line option, 130
--update

pyodide-skeleton-pypi command line
option, 134

--update-patched
pyodide-skeleton-pypi command line

option, 134
--version

pyodide command line option, 124
pyodide-skeleton-pypi command line

option, 134
--wheel-url

pyodide-lockfile-add-wheels command
line option, 132

-o
pyodide-build command line option, 127

-r
pyodide-build command line option, 127

-u
pyodide-skeleton-pypi command line

option, 134

A
aclose() (pyodide.ffi.JsAsyncGenerator method), 102
add_event_listener() (in module pyo-

dide.ffi.wrappers), 118
append() (pyodide.ffi.JsArray method), 100
as_object_map() (pyodide.ffi.JsProxy method), 110
asend() (pyodide.ffi.JsAsyncGenerator method), 102
assign() (pyodide.ffi.JsBuffer method), 103
assign_to() (pyodide.ffi.JsBuffer method), 103
ast (pyodide.code.CodeRunner attribute), 90
athrow() (pyodide.ffi.JsAsyncGenerator method), 103

B
body_used (pyodide.http.FetchResponse property), 119

232 Index

Pyodide, Release 0.26.0.dev0

buffer (pyodide.console.Console attribute), 95
buffer() (pyodide.http.FetchResponse method), 120
bytes() (pyodide.http.FetchResponse method), 120

C
canvas (None attribute), 61
catch() (pyodide.ffi.JsPromise method), 109
catch() (pyodide.webloop.PyodideFuture method), 123
checkInterrupt() (built-in function), 61
clear() (pyodide.ffi.JsMutableMap method), 108
clear_interval() (in module pyodide.ffi.wrappers),

118
clear_timeout() (in module pyodide.ffi.wrappers), 118
clone() (pyodide.http.FetchResponse method), 120
close() (pyodide.ffi.JsGenerator method), 106
code (pyodide.code.CodeRunner attribute), 90
CodeRunner (class in pyodide.code), 89
compile() (pyodide.code.CodeRunner method), 90
complete() (pyodide.console.Console method), 95
completer_word_break_characters (pyo-

dide.console.Console attribute), 96
CONFIG_VAR

pyodide-config-get command line option,
131

Console (class in pyodide.console), 94
ConsoleFuture (class in pyodide.console), 97
ConversionError, 99
count() (pyodide.ffi.JsArray method), 100
create_once_callable() (in module pyodide.ffi), 113
create_proxy() (in module pyodide.ffi), 113

D
DEST

pyodide-venv command line option, 135
destroy() (pyodide.ffi.JsDoubleProxy method), 105
destroy_proxies() (in module pyodide.ffi), 114
detectEnvironment() (built-in function), 61

E
ERRNO_CODES (None attribute), 60
eval_code() (in module pyodide.code), 91
eval_code_async() (in module pyodide.code), 92
extend() (pyodide.ffi.JsArray method), 100

F
FetchResponse (class in pyodide.http), 119
ffi (None attribute), 61
finally_() (pyodide.ffi.JsPromise method), 109
finally_() (pyodide.webloop.PyodideFuture method),

123
find_imports() (in module pyodide.code), 93
formatsyntaxerror() (pyodide.console.Console

method), 96

formatted_error (pyodide.console.ConsoleFuture at-
tribute), 97

formattraceback() (pyodide.console.Console
method), 96

from_file() (pyodide.ffi.JsBuffer method), 104
FS (None attribute), 60

G
get() (pyodide.ffi.JsMap method), 107
getCanvas2D() (built-in function), 87
getCanvas3D() (built-in function), 87
globals (None attribute), 61
globals (pyodide.console.Console attribute), 96
globalThis (module), 58

H
headers (pyodide.http.FetchResponse property), 120

I
index() (pyodide.ffi.JsArray method), 100
insert() (pyodide.ffi.JsArray method), 100
items() (pyodide.ffi.JsMap method), 108

J
js_id (pyodide.ffi.JsProxy property), 111
JsArray (class in pyodide.ffi), 100
JsAsyncGenerator (class in pyodide.ffi), 102
JsAsyncIterable (class in pyodide.ffi), 103
JsAsyncIterator (class in pyodide.ffi), 103
JsBuffer (class in pyodide.ffi), 103
JsCallable (class in pyodide.ffi), 105
JsDomElement (class in pyodide.ffi), 105
JsDoubleProxy (class in pyodide.ffi), 105
JsException, 106
JsFetchResponse (class in pyodide.ffi), 106
JsGenerator (class in pyodide.ffi), 106
JsIterable (class in pyodide.ffi), 107
JsIterator (class in pyodide.ffi), 107
JsMap (class in pyodide.ffi), 107
JsMutableMap (class in pyodide.ffi), 108
json() (pyodide.http.FetchResponse method), 120
JsPromise (class in pyodide.ffi), 109
JsProxy (class in pyodide.ffi), 110
JsTypedArray (class in pyodide.ffi), 113

K
keys() (pyodide.ffi.JsMap method), 108

L
loadedPackages (None attribute), 61
loadPackage() (built-in function), 62
loadPackagesFromImports() (built-in function), 62
loadPyodide() (built-in function), 58

Index 233

Pyodide, Release 0.26.0.dev0

M
memoryview() (pyodide.http.FetchResponse method),

120
message (pyodide.ffi.JsException attribute), 106
module

pyodide.code, 88
pyodide.console, 94
pyodide.ffi, 99
pyodide.ffi.wrappers, 117
pyodide.http, 119
pyodide.webloop, 123

mountNativeFS() (built-in function), 63
mountNodeFS() (built-in function), 63

N
NAME

pyodide-skeleton-pypi command line
option, 134

name (pyodide.ffi.JsException attribute), 106
new() (pyodide.ffi.JsException class method), 106
new() (pyodide.ffi.JsProxy method), 111

O
object_entries() (pyodide.ffi.JsProxy method), 111
object_keys() (pyodide.ffi.JsProxy method), 111
object_values() (pyodide.ffi.JsProxy method), 112
ok (pyodide.http.FetchResponse property), 120
open_url() (in module pyodide.http), 121

P
PACKAGES

pyodide-build-recipes command line
option, 130

pyodide-build-recipes-no-deps command
line option, 131

PATH
pyodide-py-compile command line option,

133
PATH (None attribute), 61
persistent_redirect_streams() (pyo-

dide.console.Console method), 96
persistent_restore_streams() (pyo-

dide.console.Console method), 96
pop() (pyodide.ffi.JsArray method), 100
pop() (pyodide.ffi.JsMutableMap method), 108
popitem() (pyodide.ffi.JsMutableMap method), 108
push() (pyodide.console.Console method), 96
PyAsyncGenerator() (class), 70
PyAsyncGenerator.return() (PyAsyncGenerator

method), 70
PyAsyncGenerator.throw() (PyAsyncGenerator

method), 70
PyAsyncIterable() (class), 70

PyAsyncIterable.[SymbolasyncIterator]()
(PyAsyncIterable method), 70

PyAsyncIterator() (class), 70
PyAsyncIterator.next() (PyAsyncIterator method),

71
PyAwaitable() (class), 71
PyBuffer() (class), 71
PyBuffer.getBuffer() (PyBuffer method), 71
PyBufferView() (class), 71
PyBufferView._released (PyBufferView attribute), 72
PyBufferView._view_ptr (PyBufferView attribute), 72
PyBufferView.c_contiguous (PyBufferView at-

tribute), 72
PyBufferView.data (PyBufferView attribute), 72
PyBufferView.f_contiguous (PyBufferView at-

tribute), 73
PyBufferView.format (PyBufferView attribute), 73
PyBufferView.itemsize (PyBufferView attribute), 73
PyBufferView.nbytes (PyBufferView attribute), 73
PyBufferView.ndim (PyBufferView attribute), 73
PyBufferView.offset (PyBufferView attribute), 73
PyBufferView.readonly (PyBufferView attribute), 73
PyBufferView.release() (PyBufferView method), 74
PyBufferView.shape (PyBufferView attribute), 73
PyBufferView.strides (PyBufferView attribute), 73
PyCallable() (class), 74
PyCallable.apply() (PyCallable method), 74
PyCallable.bind() (PyCallable method), 74
PyCallable.call() (PyCallable method), 74
PyCallable.callKwargs() (PyCallable method), 75
PyCallable.callKwargsRelaxed() (PyCallable

method), 75
PyCallable.callPromising() (PyCallable method),

75
PyCallable.callPromisingKwargs() (PyCallable

method), 75
PyCallable.callRelaxed() (PyCallable method), 76
PyCallable.callWithOptions() (PyCallable

method), 76
PyCallable.captureThis() (PyCallable method), 76
PyDict() (class), 77
pyfetch() (in module pyodide.http), 122
PyGenerator() (class), 77
PyGenerator.return() (PyGenerator method), 77
PyGenerator.throw() (PyGenerator method), 77
pyimport() (built-in function), 63
PyIterable() (class), 78
PyIterable.[Symboliterator]() (PyIterable

method), 78
PyIterator() (class), 78
PyIterator.next() (PyIterator method), 78
PyMutableSequence() (class), 78
PyMutableSequence.copyWithin() (PyMutableSe-

quence method), 78

234 Index

Pyodide, Release 0.26.0.dev0

PyMutableSequence.fill() (PyMutableSequence
method), 78

PyMutableSequence.pop() (PyMutableSequence
method), 79

PyMutableSequence.push() (PyMutableSequence
method), 79

PyMutableSequence.reverse() (PyMutableSequence
method), 79

PyMutableSequence.shift() (PyMutableSequence
method), 79

PyMutableSequence.sort() (PyMutableSequence
method), 79

PyMutableSequence.splice() (PyMutableSequence
method), 79

PyMutableSequence.unshift() (PyMutableSequence
method), 80

pyodide (module), 60
pyodide command line option

--version, 124
pyodide.canvas (module), 87
pyodide.code

module, 88
pyodide.console

module, 94
pyodide.ffi

module, 99
pyodide.ffi (module), 70
pyodide.ffi.wrappers

module, 117
pyodide.http

module, 119
pyodide.webloop

module, 123
pyodide_py (None attribute), 61
pyodide-auditwheel-copy command line option

--libdir, 125
--output-dir, 125
WHEEL_FILE, 125

pyodide-auditwheel-exports command line
option

--no-show-type, 125
--show-type, 125
WHEEL_OR_SO_FILE, 125

pyodide-auditwheel-imports command line
option

--no-show-type, 126
--show-type, 126
WHEEL_OR_SO_FILE, 126

pyodide-auditwheel-repair command line
option

--libdir, 126
--output-dir, 126
WHEEL_FILE, 126

pyodide-auditwheel-show command line option

WHEEL_OR_SO_FILE, 127
pyodide-build command line option

-C, 128
--build-dependencies, 127
--compression-level, 128
--config-setting, 128
--exports, 127
--no-build-dependencies, 127
--no-skip-built-in-packages, 127
--outdir, 127
--output-lockfile, 127
--requirements, 127
--skip-built-in-packages, 127
--skip-dependency, 127
-o, 127
-r, 127
SOURCE_LOCATION, 128

pyodide-build-recipes command line option
--build-dir, 128
--cflags, 129
--compression-level, 129
--cxxflags, 129
--force-rebuild, 129
--host-install-dir, 129
--install, 128
--install-dir, 128
--ldflags, 129
--log-dir, 129
--metadata-files, 128
--n-jobs, 129
--no-deps, 129
--no-force-rebuild, 129
--no-install, 128
--no-metadata-files, 128
--no-no-deps, 129
--recipe-dir, 128
--target-install-dir, 129
PACKAGES, 130

pyodide-build-recipes-no-deps command line
option

--build-dir, 130
--cflags, 130
--continue, 131
--cxxflags, 130
--force-rebuild, 130
--host-install-dir, 130
--ldflags, 130
--no-force-rebuild, 130
--recipe-dir, 130
--target-install-dir, 130
PACKAGES, 131

pyodide-config-get command line option
CONFIG_VAR, 131

Index 235

Pyodide, Release 0.26.0.dev0

pyodide-lockfile-add-wheels command line
option

--base-path, 132
--ignore-missing-dependencies, 132
--input, 132
--no-ignore-missing-dependencies, 132
--output, 132
--wheel-url, 132
WHEELS, 133

pyodide-py-compile command line option
--compression-level, 133
--keep, 133
--no-keep, 133
--no-silent, 133
--silent, 133
PATH, 133

pyodide-skeleton-pypi command line option
--recipe-dir, 134
--source-format, 134
--update, 134
--update-patched, 134
--version, 134
-u, 134
NAME, 134

pyodide-venv command line option
DEST, 135

PyodideConsole (class in pyodide.console), 98
PyodideFuture (class in pyodide.webloop), 123
PyodideTask (class in pyodide.webloop), 123
PyProxy() (class), 80
PyProxy.copy() (PyProxy method), 80
PyProxy.destroy() (PyProxy method), 80
PyProxy.toJs() (PyProxy method), 80
PyProxy.toString() (PyProxy method), 81
PyProxy.type (PyProxy attribute), 80
PyProxyWithGet() (class), 81
PyProxyWithGet.asJsonAdaptor() (PyProxyWithGet

method), 81
PyProxyWithGet.get() (PyProxyWithGet method), 81
PyProxyWithHas() (class), 82
PyProxyWithHas.has() (PyProxyWithHas method), 82
PyProxyWithLength() (class), 82
PyProxyWithLength.length (PyProxyWithLength at-

tribute), 82
PyProxyWithSet() (class), 82
PyProxyWithSet.delete() (PyProxyWithSet method),

82
PyProxyWithSet.set() (PyProxyWithSet method), 82
PySequence() (class), 82
PySequence.asJsonAdaptor() (PySequence method),

82
PySequence.at() (PySequence method), 83
PySequence.concat() (PySequence method), 83
PySequence.entries() (PySequence method), 83

PySequence.every() (PySequence method), 83
PySequence.filter() (PySequence method), 83
PySequence.find() (PySequence method), 84
PySequence.findIndex() (PySequence method), 84
PySequence.forEach() (PySequence method), 84
PySequence.includes() (PySequence method), 84
PySequence.indexOf() (PySequence method), 84
PySequence.join() (PySequence method), 85
PySequence.keys() (PySequence method), 85
PySequence.lastIndexOf() (PySequence method), 85
PySequence.map() (PySequence method), 85
PySequence.reduce() (PySequence method), 85
PySequence.reduceRight() (PySequence method), 86
PySequence.slice() (PySequence method), 86
PySequence.some() (PySequence method), 86
PySequence.toJSON() (PySequence method), 86
PySequence.values() (PySequence method), 86
Python Enhancement Proposals

PEP 440, 61
PEP 517, 150

PythonError() (class), 87
PythonError.type (PythonError attribute), 87

R
raise_for_status() (pyodide.http.FetchResponse

method), 120
redirect_streams() (pyodide.console.Console

method), 97
redirected (pyodide.http.FetchResponse property), 120
register_js_module() (in module pyodide.ffi), 114
registerComlink() (built-in function), 63
registerJsModule() (built-in function), 64
relaxed_call() (in module pyodide.code), 93
relaxed_wrap() (in module pyodide.code), 93
remove() (pyodide.ffi.JsArray method), 101
remove_event_listener() (in module pyo-

dide.ffi.wrappers), 118
repr_shorten() (in module pyodide.console), 98
reverse() (pyodide.ffi.JsArray method), 101
run() (pyodide.code.CodeRunner method), 90
run_async() (pyodide.code.CodeRunner method), 90
run_js() (in module pyodide.code), 94
run_sync() (in module pyodide.ffi), 114
runcode() (pyodide.console.Console method), 97
runPython() (built-in function), 64
runPythonAsync() (built-in function), 65
runsource() (pyodide.console.Console method), 97

S
scheduleCallback() (built-in function), 66
send() (pyodide.ffi.JsGenerator method), 106
set_interval() (in module pyodide.ffi.wrappers), 119
set_timeout() (in module pyodide.ffi.wrappers), 119
setCanvas2D() (built-in function), 87

236 Index

Pyodide, Release 0.26.0.dev0

setCanvas3D() (built-in function), 88
setDebug() (built-in function), 66
setdefault() (pyodide.ffi.JsMutableMap method), 109
setInterruptBuffer() (built-in function), 66
setStderr() (built-in function), 66
setStdin() (built-in function), 66
setStdout() (built-in function), 67
should_quiet() (in module pyodide.code), 94
SOURCE_LOCATION

pyodide-build command line option, 128
stack (pyodide.ffi.JsException attribute), 106
status (pyodide.http.FetchResponse property), 121
status_text (pyodide.http.FetchResponse property),

121
stderr_callback (pyodide.console.Console attribute),

97
stdin_callback (pyodide.console.Console attribute),

97
stdout_callback (pyodide.console.Console attribute),

97
string() (pyodide.http.FetchResponse method), 121
syntax_check (pyodide.console.ConsoleFuture at-

tribute), 97

T
text() (pyodide.http.FetchResponse method), 121
then() (pyodide.ffi.JsPromise method), 110
then() (pyodide.webloop.PyodideFuture method), 123
throw() (pyodide.ffi.JsGenerator method), 107
to_bytes() (pyodide.ffi.JsBuffer method), 104
to_file() (pyodide.ffi.JsBuffer method), 104
to_js() (in module pyodide.ffi), 115
to_memoryview() (pyodide.ffi.JsBuffer method), 105
to_py() (pyodide.ffi.JsArray method), 101
to_py() (pyodide.ffi.JsProxy method), 112
to_string() (pyodide.ffi.JsBuffer method), 105
toPy() (built-in function), 68
type (pyodide.http.FetchResponse property), 121
typeof (pyodide.ffi.JsProxy property), 113

U
unpack_archive() (pyodide.http.FetchResponse

method), 121
unpackArchive() (built-in function), 68
unregister_js_module() (in module pyodide.ffi), 117
unregisterJsModule() (built-in function), 68
unwrap() (pyodide.ffi.JsDoubleProxy method), 106
update() (pyodide.ffi.JsMutableMap method), 109
url (pyodide.http.FetchResponse property), 121

V
values() (pyodide.ffi.JsMap method), 108
version (None attribute), 61

W
WebLoop (class in pyodide.webloop), 124
WebLoopPolicy (class in pyodide.webloop), 124
WHEEL_FILE

pyodide-auditwheel-copy command line
option, 125

pyodide-auditwheel-repair command line
option, 126

WHEEL_OR_SO_FILE
pyodide-auditwheel-exports command line

option, 125
pyodide-auditwheel-imports command line

option, 126
pyodide-auditwheel-show command line

option, 127
WHEELS

pyodide-lockfile-add-wheels command
line option, 133

Index 237

	What is Pyodide?
	Try Pyodide
	Table of contents
	Using Pyodide
	Getting started
	Try it online
	Setup
	Running Python code
	Complete example
	Alternative Example
	Accessing Python scope from JavaScript
	Accessing JavaScript scope from Python

	Downloading and deploying Pyodide
	Downloading Pyodide
	CDN
	GitHub releases

	Serving Pyodide packages
	Serving locally
	Remote deployments

	Using Pyodide
	Web browsers
	Supported browsers

	Web Workers
	Node.js
	Loading custom Python code
	Using wheels
	Loading then importing Python code
	From Python
	From JavaScript
	Running external code directly

	Dealing with the file system
	Mounting a file system

	(Experimental) Using the native file system in the browser
	Mounting a directory
	Synchronizing changes to native file system

	Accessing Files Quick Reference
	In Node.js
	In the browser
	Downloading external archives

	Using Pyodide in a web worker
	Setup
	Detailed example
	Consumers
	Web worker
	The worker API
	Caveats

	Using Pyodide in a service worker
	Detailed example
	Setup
	Consumer
	Service worker
	Using module-type service workers
	Setup
	Consumers
	Service worker

	Working with Bundlers
	Webpack
	Vite

	Loading packages
	How to chose between micropip.install and pyodide.loadPackage?
	Micropip
	Installing packages
	Installing wheels from arbitrary URLs

	Example
	Loading packages with pyodide.loadPackage()
	Packages built in Pyodide
	Using SDL-based packages in Pyodide
	Setting canvas
	Working with infinite loop
	Known issues

	Pyodide Python compatibility
	Python Standard library
	Optional modules
	Modules with limited functionality

	Synchronous HTTP requests support
	Removed modules
	Included but not working modules

	Type translations
	Round trip conversions
	Implicit conversions
	Python to JavaScript
	JavaScript to Python

	Proxying
	Proxying from JavaScript into Python
	Proxying from Python into JavaScript

	Explicit Conversion of Proxies
	Python to JavaScript
	JavaScript to Python

	Functions
	Calling Python objects from JavaScript
	Calling JavaScript functions from Python

	Buffers
	Using JavaScript Typed Arrays from Python
	Using Python Buffer objects from JavaScript

	Errors
	Importing Objects
	Importing Python objects into JavaScript
	Importing JavaScript objects into Python

	Interrupting execution
	Setting up interrupts
	Allowing JavaScript code to be interrupted

	Redirecting standard streams
	Standard Input
	Always raise IO Error
	Set the default behavior
	A stdin handler
	A read handler
	isatty
	Raising IO errors
	Handling Keyboard interrupts

	Standard Out / Standard Error
	Set the default behavior
	A batched handler
	A raw handler
	A write handler
	isatty

	API Reference
	JavaScript API
	Globals
	pyodide
	pyodide.ffi
	pyodide.canvas

	Python API
	pyodide.code
	pyodide.console
	pyodide.ffi
	pyodide.http
	pyodide.webloop

	pyodide CLI
	pyodide
	auditwheel
	copy
	exports
	imports
	repair
	show
	build
	build-recipes
	build-recipes-no-deps
	config
	get
	list
	lockfile
	add-wheels
	py-compile
	skeleton
	pypi
	venv

	Frequently Asked Questions
	How can I load external files in Pyodide?
	Why can’t I load files from the local file system?
	How can I execute code in a custom namespace?
	How to detect that code is run with Pyodide?
	How do I create custom Python packages from JavaScript?
	How can I send a Python object from my server to Pyodide?
	How can I use a Python function as an event handler?
	How can I use fetch with optional arguments from Python?
	How can I control the behavior of stdin / stdout / stderr?
	Why can’t Micropip find a “pure Python wheel” for a package?
	How can I change the behavior of runPython() and runPythonAsync()?
	Why can’t I import a file I just wrote to the file system?
	Why changes made to IndexedDB don’t persist?
	How can I access JavaScript objects/attributes in Python if their names are Python keywords?

	Development
	Building from sources
	Build instructions
	Using Docker
	Using the “Docker” dev container
	Using the “Conda” dev container

	Using make
	Partial builds
	Environment variables

	Creating a Pyodide package
	Determining if creating a Pyodide package is necessary
	Building Python wheels (out of tree)
	Building a Python package (in tree)
	Prerequisites
	Creating the meta.yaml file
	Building the package
	Loading the package
	Fixing build issues
	Writing tests for your package
	Generating patches
	Upgrading a package
	Migrating Patches
	Upstream your patches!
	The package build pipeline
	Partial Rebuilds
	C library dependencies
	Structure of a Pyodide package
	The meta.yaml specification
	package
	package/name
	package/version
	package/top-level
	package/tag
	source
	source/url
	source/extract_dir
	source/path
	source/sha256
	source/patches
	source/extras
	build
	build/cflags
	build/cxxflags
	build/ldflags
	build/exports
	build/backend-flags
	build/type
	build/script
	build/cross-script
	build/post
	build/unvendor-tests
	build/vendor-sharedlib
	requirements
	requirements/run
	requirements/host
	requirements/executable
	test
	test/imports
	Supported Environment Variables

	Rust/PyO3 Packages

	Building and testing Python packages out of tree
	Building binary packages for Pyodide
	Install pyodide-build
	Set up Emscripten
	Build the WASM/Emscripten wheel
	Serve the wheel
	Notes

	Testing packages against Pyodide
	Build Github actions example

	How to Contribute
	Development Workflow
	Code of Conduct
	Development
	Bugs & Issues
	How to Contribute
	Contributing to the “core” C Code

	Documentation
	Building the docs

	Migrating patches
	Maintainer information
	License
	Get in Touch
	Contributing to the “core” C Code
	What the files do
	Backend utilities
	Type conversion from JavaScript to Python
	Type conversion from Python to JavaScript
	CPython APIs
	Conventions for indicating errors
	Python APIs to avoid:
	Error Handling Macros
	Error Propagation Macros
	JavaScript to CPython calling convention adaptors
	Structure of functions
	Testing

	Maintainer information
	Making a release
	Preparation for making a major release
	Preparation for making a minor release
	Preparation for making an alpha release
	Release Instructions
	Fixing documentation for a released version
	Updating the Docker image
	Updating packages
	Upgrading pyodide to a new version of CPython
	Prerequisites
	Steps
	Old major Python upgrades

	Testing and benchmarking
	Testing
	Running the Python test suite
	Custom test marks

	Running the JavaScript test suite
	Manual interactive testing

	Benchmarking
	Linting

	Debugging tips
	Run prettier on pyodide.asm.js
	Linker error: function signature mismatch
	Misencoded Wasm
	Debugging RuntimeError: function signature mismatch
	Dealing with ;; text is truncated due to size
	Using C source maps

	Project
	What is Pyodide?
	History
	Contributing
	Citing
	Communication
	Donations
	License
	Infrastructure support

	Roadmap
	Improve documentation
	Reducing download sizes and initialization times
	Improve performance of Python code in Pyodide
	Find a better way to compile Fortran
	Better project sustainability
	Improve support for WebWorkers
	Synchronous IO
	Write http.client in terms of Web APIs

	Code of Conduct
	Conduct
	Moderation

	Governance and Decision-making
	Roles And Responsibilities
	Contributors
	Community members team
	Core developers

	Decision Making Process

	Change Log
	Unreleased
	Packages

	Version 0.25.1
	Version 0.25.0
	General
	JavaScript API
	Python API
	Python / JavaScript Foreign Function Interface
	Pyodide CLI
	Load time & size optimizations
	Build system
	Packages

	Version 0.24.1
	Packages

	Version 0.24.0
	General
	JavaScript API
	Python API
	Python / JavaScript Foreign Function Interface
	Deployment
	Build System
	Packages
	Pyodide CLI
	Misc

	Version 0.23.4
	Version 0.23.3
	Version 0.23.2
	Version 0.23.1
	Deployment
	CLI
	Build System

	Version 0.23.0
	General
	JavaScript API
	Python standard library
	Deployment
	Python / JavaScript Foreign Function Interface
	Build System
	Pyodide CLI
	REPL
	Packages
	List of Contributors

	Version 0.22.1
	Package Loading
	Build system

	Version 0.22.0
	Deployment and testing
	Foreign function interface
	JsProxy / JavaScript from Python
	PyProxy / Using Python from JavaScript

	JavaScript API
	Package Loading
	Build System
	Packages
	List of Contributors

	Version 0.21.3
	Version 0.21.2
	Version 0.21.1
	Version 0.21.0
	Build system
	Pyodide Module and type conversions
	REPL
	micropip and package loading
	Packages
	Miscellaneous
	List of contributors

	Version 0.20.0
	CPython and stdlib
	Packages
	Type translations
	Javascript package
	pyodide_build
	Uncategorized
	List of contributors

	Version 0.19.1
	Packages
	Type translations
	REPL
	List of contributors

	Version 0.19.0
	Python package
	JavaScript package
	Python / JavaScript type conversions
	pyodide-build
	micropip
	Packages
	Uncategorized
	List of contributors

	Version 0.18.1
	Console
	Python package
	JavaScript package
	Python / JavaScript type conversions
	Packages
	Micellaneous

	Version 0.18.0
	General
	Standard library
	JavaScript package
	Python package
	Python / JavaScript type conversions
	pyodide-build
	micropip
	Packages
	List of contributors

	Version 0.17.0
	Improvements to package loading and dynamic linking
	Python / JS type conversions
	pyodide-py package
	pyodide-js
	micropip
	Build system
	REPL
	Packages
	List of contributors

	Version 0.16.1
	Python and the standard library
	Python / JS type conversions
	pyodide-py package and micropip
	Build system
	Other improvements
	Packages
	Backward incompatible changes
	List of contributors

	Version 0.15.0
	Version 0.14.3
	Version 0.14.0
	Version 0.13.0
	Version 0.12.0
	Version 0.11.0
	Version 0.10.0
	Pyodide Deprecation Timeline
	0.25.0
	0.24.0
	0.23.0
	0.21.0
	0.20.0
	0.19.0

	Related Projects
	WebAssembly ecosystem
	Notebook environments, IDEs, and REPLs
	Workarounds for common WASM and browser limitations
	Dashboards and visualization
	Other projects

	Communication
	Python Module Index
	Index

